Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36831998

ABSTRACT

Reporter genes are important tools in many biological disciplines. The discovery of novel reporter genes is relatively rare. However, known reporter genes are constantly applied to novel applications. This study reports the performance of the bilirubin-dependent fluorescent protein UnaG from the Japanese eel Anguilla japonicas in live Escherichia coli cells in response to the disruption of outer membrane (OM) integrity at low bilirubin (BR) concentrations. Using the E. coli wild-type strain MC4100, its isogenic OM-deficient mutant strain NR698, and different OM-active compounds, we show that BR uptake and UnaG fluorescence depend on a leaky OM at concentrations of 10 µM BR and below, while fluorescence is mostly OM integrity-independent at concentrations above 50 µM BR. We suggest that these properties of the UnaG-BR couple might be applied as a biosensor as an alternative to the OM integrity assays currently in use.


Subject(s)
Anguilla , Escherichia coli , Animals , Fluorescence , Escherichia coli/metabolism , Anguilla/metabolism , Green Fluorescent Proteins/metabolism , Bilirubin/metabolism
2.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751755

ABSTRACT

Turgencin A, a potent antimicrobial peptide isolated from the Arctic sea squirt Synoicum turgens, consists of 36 amino acid residues and three disulfide bridges, making it challenging to synthesize. The aim of the present study was to develop a truncated peptide with an antimicrobial drug lead potential based on turgencin A. The experiments consisted of: (1) sequence analysis and prediction of antimicrobial potential of truncated 10-mer sequences; (2) synthesis and antimicrobial screening of a lead peptide devoid of the cysteine residues; (3) optimization of in vitro antimicrobial activity of the lead peptide using an amino acid replacement strategy; and (4) screening the synthesized peptides for cytotoxic activities. In silico analysis of turgencin A using various prediction software indicated an internal, cationic 10-mer sequence to be putatively antimicrobial. The synthesized truncated lead peptide displayed weak antimicrobial activity. However, by following a systematic amino acid replacement strategy, a modified peptide was developed that retained the potency of the original peptide. The optimized peptide StAMP-9 displayed bactericidal activity, with minimal inhibitory concentrations of 7.8 µg/mL against Staphylococcus aureus and 3.9 µg/mL against Escherichia coli, and no cytotoxic effects against mammalian cells. Preliminary experiments indicate the bacterial membranes as immediate and primary targets.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Biological Products/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Amino Acid Sequence/genetics , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Aquatic Organisms/genetics , Biological Products/pharmacology , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/chemical synthesis , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Sequence Analysis, Protein , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
3.
Mar Drugs ; 18(1)2020 Jan 12.
Article in English | MEDLINE | ID: mdl-31940927

ABSTRACT

This study reports the isolation of two novel cysteine-rich antibacterial peptides, turgencin A and turgencin B, along with their oxidized derivatives, from the Arctic marine colonial ascidian Synoicum turgens. The peptides are post-translationally modified, containing six cysteines with an unusual disulfide connectivity of Cys1-Cys6, Cys2-Cys5, and Cys3-Cys4 and an amidated C-terminus. Furthermore, the peptides contain methionine residues resulting in the isolation of peptides with different degrees of oxidation. The most potent peptide, turgencin AMox1 with one oxidized methionine, displayed antimicrobial activity against both Gram-negative and Gram-positive bacteria with a minimum inhibitory concentration (MIC) as low as 0.4 µM against selected bacterial strains. In addition, the peptide inhibited the growth of the melanoma cancer cell line A2058 (IC50 = 1.4 µM) and the human fibroblast cell line MRC-5 (IC50 = 4.8 µM). The results from this study show that natural peptides isolated from marine tunicates have the potential to be promising drug leads.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Peptides/pharmacology , Urochordata/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Disulfides/chemistry , Drug Discovery , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Peptides/chemistry , Peptides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...