Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1047470, 2023.
Article in English | MEDLINE | ID: mdl-36998810

ABSTRACT

The compressive strength evolution of 37 centigrade-cured Biodentine, a cement-based dental material, is quantified experimentally by crushing cylindrical specimens with length-to-diameter ratios amounting to 1.84 and 1.34, respectively, at nine different material ages ranging from 1 h to 28 days. After excluding strength values significantly affected by imperfections, formulae developed for concrete are i) adapted for inter- and extrapolation of measured strength values, and ii) used for quantification of the influence of the slenderness of the specimens on the compressive strength. The microscopic origin of the macroscopic uniaxial compressive strength of mature Biodentine is investigated by means of a micromechanics model accounting for lognormal stiffness and strength distributions of two types of calcite-reinforced hydrates. The following results are obtained: The material behavior of Biodentine is non-linear in the first few hours after production. After that, Biodentine behaves virtually linear elastic all the way up to sudden brittle failure. The strength evolution of Biodentine can be well described as the exponential of a function involving the square root of the inverse of the material age. The genuine uniaxial compressive strength evolution can be quantified using a correction formula taken from a standard for testing of concrete, which accounts for length-to-diameter ratios of cylindrical samples deviating from 2. Multiscale modeling suggests that 63% of the overall material volume, occupied by dense calcite-reinforced hydration products, fail virtually simultaneously. This underlines the highly optimized nature of the studied material.

2.
J Mech Behav Biomed Mater ; 124: 104863, 2021 12.
Article in English | MEDLINE | ID: mdl-34634693

ABSTRACT

Biodentine is a calcium silicate/calcium carbonate/zirconium dioxide/water-based dental replacement biomaterial, significantly outperforming the stiffness and hardness properties of chemically similar construction cement pastes. We here report the first systematic micromechanical investigation of Biodentine, combining grid nanoindentation with ultrasonic testing and micromechanical modeling. Histograms of nanoindentation-probed hardness and elastic modulus, comprising more than 5700 values each, are very well represented by the superposition of three log-normal distributions (LNDs). Most of the data (74%) belong to the intermediate LND, representing highly dense calcite-reinforced hydration products with on-average more than 60GPa elastic modulus and 3GPa hardness. The remaining data refer, on the one hand, to lower density hydration products, and on the other hand, to single-micron-sized unhydrated clinker and zirconium-dioxide inclusions. Micromechanical homogenization of these three material phases delivers elastic properties of the overall cement paste material, which significantly exceed those probed by more than 300 ultrasonic tests performed in the kHz and MHz regime. This indicates the presence of micro-defects, which slightly weaken the otherwise highly optimized biomaterial system.


Subject(s)
Construction Materials , Glass Ionomer Cements , Calcium Carbonate , Hardness , Water
3.
Clin Oral Investig ; 24(12): 4185-4196, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33051813

ABSTRACT

OBJECTIVES: Complement is an efficient plasma immune surveillance system. It initiates inflammation by inducing vascular modifications and attracting immune cells expressing Complement receptors. Investigating Complement receptors in non-immune cells pointed out Complement implication in the regeneration of tissue such as liver, skin, or bone. This review will shed the light on Complement implication in the initial steps of dental tissue regeneration. MATERIALS AND METHODS: Review of literature was conducted on Complement local expression and implication in oral tissue regeneration in vivo and in vitro. RESULTS: Recent data reported expression of Complement receptors and soluble proteins in dental tissues. Cultured pulp fibroblasts secrete all Complement components. Complement C3b and MAC have been shown to control bacteria growth in the dental pulp while C3a and C5a are involved in the initial steps of pulp regeneration. Indeed, C3a induces pulp stem cell/fibroblast proliferation, and fibroblast recruitment, while C5a induces neurite growth, guides stem cell recruitment, and odontoblastic differentiation. Similarly, cultured periodontal ligament cells produce C5a which induces bone marrow mesenchymal stem cell recruitment. CONCLUSIONS: Overall, this review highlights that local Complement synthesis in dental tissues plays a major role, not only in eliminating bacteria but also in the initial steps of dental tissue regeneration, thus providing a link between dental tissue inflammation and regeneration. CLINICAL RELEVANCE: Complement provides an explanation for understanding why inflammation preceeds regeneration. This may also provide a biological rational for understanding the reported success conservative management of mature permanent teeth with carious pulp exposure.


Subject(s)
Complement Activation , Dental Pulp , Cell Differentiation , Fibroblasts , Humans , Inflammation , Stem Cells
4.
Dent Mater ; 31(11): 1290-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26364144

ABSTRACT

OBJECTIVE: To evaluate the biocompatibility and osteoinductive properties of Bioroot™ RCS (BR, Septodont, France) compared to Kerr's Pulp Canal Sealer™ (PCS, Kerr, Italy) using the mouse pulp-derived stem cell line A4, which have an osteo/odontogenic potential in vitro and contribute to efficient bone repair in vivo. METHODS: A4 cells were cultured at the stem cell stage in the presence of solid disks of BR or PCS, whereas untreated A4 cells were used as control. After 3, 7, 10 days of direct contact with the sealers, cell viability was quantified using Trypan Blue exclusion assay. Immunolabelings were performed to assess the expression of odontoblast markers i.e. type 1 collagen, DMP1 or BSP. Finally, sealer-treated cells were induced toward osteo/odontogenic differentiation to assess the impact of the sealers on mineralization by Von Kossa staining. Statistical significance was evaluated by one-way analysis of variance and t-test (p<0.05). RESULTS: BR did not alter the viability and morphology of A4 pulpal cells compared to control group (p>0.05); however, living cell percentage of PCS was significantly lower compared to control and BR groups (p<0.05). BR preserved the intrinsic ability of A4 cells to express type 1 collagen, DMP1 or BSP at the stem cell stage. It did not alter the integrity of collagen fibers surrounding the cells and promoted overexpression of BSP and DMP1 at the cell surface. In contrast to PCS, BR did not compromise the mineralization potential of pulpal A4 stem cells. SIGNIFICANCE: Bioroot™ RCS was not as cytotoxic as PCS. It did not recruit the pulpal stem cells toward differentiation but preserve their osteo-odontogenic intrinsic properties. Bioroot™ RCS might provide more suitable environment to induce stem cells for hard tissue deposition.


Subject(s)
Dental Pulp , Odontogenesis , Stem Cells , Animals , Cell Differentiation , Cell Line , Materials Testing , Mice
5.
J Biomech ; 47(1): 3-13, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24268798

ABSTRACT

Dental implants are now widely used for the replacement of missing teeth in fully or partially edentulous patients and for cranial reconstructions. However, risks of failure, which may have dramatic consequences, are still experienced and remain difficult to anticipate. The stability of biomaterials inserted in bone tissue depends on multiscale phenomena of biomechanical (bone-implant interlocking) and of biological (mechanotransduction) natures. The objective of this review is to provide an overview of the biomechanical behavior of the bone-dental implant interface as a function of its environment by considering in silico, ex vivo and in vivo studies including animal models as well as clinical studies. The biomechanical determinants of osseointegration phenomena are related to bone remodeling in the vicinity of the implants (adaptation of the bone structure to accommodate the presence of a biomaterial). Aspects related to the description of the interface and to its space-time multiscale nature will first be reviewed. Then, the various approaches used in the literature to measure implant stability and the bone-implant interface properties in vitro and in vivo will be described. Quantitative ultrasound methods are promising because they are cheap, non invasive and because of their lower spatial resolution around the implant compared to other biomechanical approaches.


Subject(s)
Dental Implants , Dental Prosthesis Design , Osseointegration , Ultrasonography/methods , Animals , Biocompatible Materials/chemistry , Biomechanical Phenomena , Bone Remodeling , Humans
6.
J Biomech ; 46(6): 1162-8, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23352649

ABSTRACT

The use of tricalcium silicate-based cement (TSBC) as bone substitute material for implant stabilization is promising. However, its mechanical behavior under fatigue loading in presence of a dental implant was not reported so far because of the difficulty of measuring TSBC properties around a dental implant in a nondestructive manner. The aim of this study is to investigate the evolution of the 10 MHz ultrasonic response of a dental implant embedded in TSBC versus fatigue time. Seven implants were embedded in TSBC following the same experimental protocol used in clinical situations. One implant was left without any mechanical solicitation after its insertion in TSBC. The ultrasonic response of all implants was measured during 24 h using a dedicated device deriving from previous studies. An indicator I based on the temporal variation of the signal amplitude was derived and its variation as a function of fatigue time was determined. The results show no significant variation of I as a function of time without mechanical solicitation, while the indicator significantly increases (p<10(-5), F=199.1) at an average rate of 2.2 h(-1) as a function of fatigue time. The increase of the indicator may be due to the degradation of the Biodentine-implant interface, which induces an increase of the impedance gap at the implant surface. The results are promising because they show the potentiality of ultrasonic methods to (i) investigate the material properties around a dental implant and (ii) optimize the conception of bone substitute materials in the context of dental implant surgery.


Subject(s)
Bone Cements , Calcium Compounds , Dental Implants , Silicates , Acoustics , Dental Stress Analysis , Stress, Mechanical
7.
Clin Oral Investig ; 17(1): 243-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22411260

ABSTRACT

OBJECTIVES: A multicentric randomized, 3-year prospective study was conducted to determine for how long Biodentine, a new biocompatible dentine substitute, can remain as a posterior restoration. MATERIALS AND METHODS: First, Biodentine was compared to the composite Z100®, to evaluate whether and for how long it could be used as a posterior restoration according to selected United States Public Health Service (USPHS)' criteria (mean ± SD). Second, when abrasion occurred, Biodentine was evaluated as a dentine substitute combined with Z100®. RESULTS: A total of 397 cases were included. This interim analysis was conducted on 212 cases that were seen for the 1-year recall. On the day of restoration placement, both materials obtained good scores for material handling, anatomic form (0.12 ± 0.33), marginal adaptation (0.01 ± 0.10) and interproximal contact (0.11 ± 0.39). During the follow-up, both materials scored well in surface roughness (≤1) without secondary decay and post-operative pain. Biodentine kept acceptable surface properties regarding anatomic form score (≤1), marginal adaptation score (≤2) and interproximal contact score (≤1) for up to 6 months after placement. Resistance to marginal discoloration was superior with Biodentine compared to Z100®. When Biodentine was retained as a dentine substitute after pulp vitality control, it was covered systematically with the composite Z100®. This procedure yielded restorations that were clinically sound and symptom free. CONCLUSIONS: Biodentine is able to restore posterior teeth for up to 6 months. When subsequently covered with Z100®, it is a convenient, efficient and well tolerated dentine substitute. CLINICAL RELEVANCE: Biodentine as a dentine substitute can be used under a composite for posterior restorations.


Subject(s)
Biocompatible Materials/standards , Calcium Compounds/standards , Dental Materials/standards , Dental Restoration, Permanent/standards , Dentin/anatomy & histology , Silicates/standards , Adult , Biocompatible Materials/chemistry , Bite Force , Calcium Compounds/chemistry , Color , Composite Resins/chemistry , Dental Caries/prevention & control , Dental Cavity Preparation/classification , Dental Marginal Adaptation , Dental Materials/chemistry , Dental Restoration Failure , Dental Restoration Repair , Dental Restoration Wear , Dental Restoration, Permanent/classification , Dentin Sensitivity/prevention & control , Follow-Up Studies , Humans , Prospective Studies , Pulp Capping and Pulpectomy Agents/chemistry , Silicates/chemistry , Silicon Dioxide/chemistry , Surface Properties , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...