Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 13(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36292838

ABSTRACT

Cultivar resistance is an essential management strategy for the Mexican rice borer, Eoreuma loftini (Dyar), in sugarcane in the USA, but resistance mechanisms are poorly understood. Resistance was evaluated among Louisiana's (USA) commercial sugarcane cultivars and experimental clones through field screenings, greenhouse trials, and a diet incorporation assay. Cultivars L 01-299 and HoCP 85-845 had the lowest borer injury levels, while HoCP 00-950 and L 12-201 were among the most heavily injured in field and greenhouse trials. The variability of results between the two field trials suggests that a genotype × environment interaction might affect the expression of resistance. Oviposition did not differ among evaluated cultivars in the greenhouse choice study. Results from the no-choice experiment showed that neonatal establishment differed among cultivars by up to 3-fold. In a diet incorporation assay, all cultivars reduced larval weight up to 86.5% and increased days to pupation by 1.8-fold relative to the diet-only control. Collectively, these results suggest that Louisiana's sugarcane breeding germplasm contains various resistance levels to E. loftini, emphasizing the importance of screening cultivars before they are released to growers. Future studies should try to determine the influence of environmental factors on resistance expression.

2.
Environ Entomol ; 51(1): 196-203, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34729590

ABSTRACT

Cultivar resistance is a key management strategy for the sugarcane borer, Diatraea saccharalis (F.), the primary pest in Louisiana sugarcane, but mechanisms of resistance are not well understood. This research evaluated the potential mechanisms of cultivar resistance to D. saccharalis among commercially produced sugarcane cultivars and experimental lines through three field screenings, two greenhouse experiments, and one diet incorporation assay. The resistant standards HoCP 85-845, HoCP 04-838, and L 01-299 were among the cultivars with the lowest D. saccharalis injury levels in both field and greenhouse trials. Cultivars HoCP 00-950 and L 12-201 were among the most heavily injured in both trials. Differences in oviposition among cultivars in the greenhouse choice study were not detected, suggesting adult preference is not a key factor in resistance. This was also supported by the no-choice greenhouse experiment in which up to 9-fold differences in neonate establishment among cultivars were detected. Larval injury among cultivars in greenhouse experiments was consistent with field studies suggesting traits that affect neonate establishment (e.g., rind hardness) help to confer resistance in the field. In the diet incorporation assay, lower larval weights and longer time to pupation were observed on resistant cultivar Ho 08-9003, but no differences were found among current commercial cultivars. Continuous evaluation of cultivar resistance to D. saccharalis is important in developing effective integrated pest management strategies for this pest. More research into plant characteristics (e.g., leaf sheath tightness and pubescence) associated with resistance is needed.


Subject(s)
Moths , Saccharum , Animals , Female , Larva , Louisiana , Oviposition , Pest Control
SELECTION OF CITATIONS
SEARCH DETAIL
...