Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-465481

ABSTRACT

In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from Wuhan, China spurring the Coronavirus Disease-19 (COVID-19) pandemic that has resulted in over 219 million confirmed cases and nearly 4.6 million deaths worldwide. Intensive research efforts ensued to constrain SARS-CoV-2 and reduce COVID-19 disease burden. Due to the severity of this disease, the US Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) recommend that manipulation of active viral cultures of SARS-CoV-2 and respiratory secretions from COVID-19 patients be performed in biosafety level 3 (BSL3) containment laboratories. Therefore, it is imperative to develop viral inactivation procedures that permit samples to be transferred and manipulated at lower containment levels (i.e., BSL2), and maintain the fidelity of downstream assays to expedite the development of medical countermeasures (MCMs). We demonstrate optimal conditions for complete viral inactivation following fixation of infected cells with paraformaldehyde solution or other commonly-used branded reagents for flow cytometry, UVC inactivation in sera and respiratory secretions for protein and antibody detection assays, heat inactivation following cDNA amplification of single-cell emulsions for droplet-based single-cell mRNA sequencing applications, and extraction with an organic solvent for metabolomic studies. Thus, we provide a suite of protocols for viral inactivation of SARS-CoV-2 and COVID-19 patient samples for downstream contemporary immunology assays that facilitate sample transfer to BSL2, providing a conceptual framework for rapid initiation of high-fidelity research as the COVID-19 pandemic continues.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-446468

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing COVID-19 pandemic have caused [~]40 million cases and over 648,000 deaths in the United States alone. Troubling disparities in COVID-19-associated mortality emerged early, with nearly 70% of deaths confined to Black/African-American (AA) patients in some areas, yet targeted studies within this demographic are scant. Multi-omics single-cell analyses of immune profiles from airways and matching blood samples of Black/AA patients revealed low viral load, yet pronounced and persistent pulmonary neutrophilia with advanced features of cytokine release syndrome and acute respiratory distress syndrome (ARDS), including exacerbated production of IL-8, IL-1{beta}, IL-6, and CCL3/4 along with elevated levels of neutrophil elastase and myeloperoxidase. Circulating S100A12+/IFITM2+ mature neutrophils are recruited via the IL-8/CXCR2 axis, which emerges as a potential therapeutic target to reduce pathogenic neutrophilia and constrain ARDS in severe COVID-19. Graphical AbstractThe lung pathology due to severe COVID-19 is marked by a perpetual pathogenic neutrophilia, leading to acute respiratory distress syndrome (ARDS) even in the absence of viral burden. Circulating mature neutrophils are recruited to the airways via IL-8 (CXCL8)/CXCR2 chemotaxis. Recently migrated neutrophils further differentiate into a transcriptionally active and hyperinflammatory state, with an exacerbated expression of IL-8 (CXCL8), IL-1{beta} (IL1B), CCL3, CCL4, neutrophil elastase (NE), and myeloperoxidase (MPO) activity. Airway neutrophils and recruited inflammatory monocytes further increase their production of IL-8 (CXCL8), perpetuating lung neutrophilia in a feedforward loop. MdCs and T cells produce IL-1{beta} and TNF, driving neutrophils reprogramming and survival. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=142 SRC="FIGDIR/small/446468v2_ufig1.gif" ALT="Figure 1"> View larger version (43K): org.highwire.dtl.DTLVardef@81fd3aorg.highwire.dtl.DTLVardef@181e63org.highwire.dtl.DTLVardef@172fedcorg.highwire.dtl.DTLVardef@ba55a7_HPS_FORMAT_FIGEXP M_FIG C_FIG

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-410589

ABSTRACT

BackgroundSARS-CoV-2 has caused over 36,000,000 cases and 1,000,000 deaths globally. Comprehensive assessment of the multifaceted anti-viral antibody response is critical for diagnosis, differentiation of severe disease, and characterization of long-term immunity. Initial observations suggest that severe disease is associated with higher antibody levels and greater B cell/plasmablast responses. A multi-antigen immunoassay to define the complex serological landscape and clinical associations is essential. MethodsWe developed a multiplex immunoassay and evaluated serum/plasma from adults with RT-PCR-confirmed SARS-CoV-2 infections during acute illness (N=52) and convalescence (N=69); and pre-pandemic (N=106) and post-pandemic (N=137) healthy adults. We measured IgA, IgG, and/or IgM against SARS-CoV-2 Nucleocapsid (N), Spike domain 1 (S1), receptor binding domain (S1-RBD) and S1-N-terminal domain (S1-NTD). ResultsTo diagnose infection, the combined [IgA+IgG+IgM] or IgG for N, S1, and S1-RBD yielded AUC values -0.90 by ROC curves. From days 6-30 post-symptom onset, the levels of antigen-specific IgG, IgA or [IgA+IgG+IgM] were higher in patients with severe/critical compared to mild/moderate infections. Consistent with excessive concentrations of antibodies, a strong prozone effect was observed in sera from severe/critical patients. Notably, mild/moderate patients displayed a slower rise and lower peak in anti-N and anti-S1 IgG levels compared to severe/critical patients, but anti-RBD IgG and neutralization responses reached similar levels at 2-4 months. ConclusionThis SARS-CoV-2 multiplex immunoassay measures the magnitude, complexity and kinetics of the antibody response against multiple viral antigens. The IgG and combined-isotype SARS-CoV-2 multiplex assay is highly diagnostic of acute and convalescent disease and may prognosticate severity early in illness. One Sentence SummaryIn contrast to patients with moderate infections, those with severe COVID-19 develop prominent, early antibody responses to S1 and N proteins.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20216192

ABSTRACT

An emerging feature of COVID-19 is the identification of autoreactivity in patients with severe disease that may contribute to disease pathology, however the origin and resolution of these responses remain unclear. Previously, we identified strong extrafollicular B cell activation as a shared immune response feature between both severe COVID-19 and patients with advanced rheumatic disease. In autoimmune settings, this pathway is associated with relaxed peripheral tolerance in the antibody secreting cell compartment and the generation of de novo autoreactive responses. Investigating these responses in COVID-19, we performed single-cell repertoire analysis on 7 patients with severe disease. In these patients, we identify the expansion of a low-mutation IgG1 fraction of the antibody secreting cell compartment that are not memory derived, display low levels of selective pressure, and are enriched for autoreactivity-prone IGHV4-34 expression. Within this compartment, we identify B cell lineages that display specificity to both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against glomerular basement membrane, and describe progressive, broad, clinically relevant autoreactivity within these patients correlated with disease severity. Importantly, we identify anti-carbamylated protein responses as a common hallmark and candidate biomarker of broken peripheral tolerance in severe COVID-19. Finally, we identify the contraction of this pathway upon recovery, and re-establishment of tolerance standards coupled with a concomitant loss of acute-derived ASCs irrespective of antigen specificity. In total, this study reveals the origins, breadth, and resolution of acute-phase autoreactivity in severe COVID-19, with significant implications in both early interventions and potential treatment of patients with post-COVID sequelae.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20097535

ABSTRACT

BackgroundAccurate serological assays can improve the early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but few studies have compared performance characteristics between assays in symptomatic and recovered patients. MethodsWe recruited 32 patients who had 2019 coronavirus disease (COVID-19; 18 hospitalized and actively symptomatic, 14 recovered mild cases), and measured levels of IgM (against the full-length S1 or the highly homologous SARS-CoV E protein) and IgG (against S1 receptor binding domain [RBD]). We performed the same analysis in 103 pre-2020 healthy adult control (HC) participants and 13 participants who had negative molecular testing for SARS-CoV-2. ResultsAnti-S1-RBD IgG levels were very elevated within days of symptom onset for hospitalized patients (median 2.04 optical density [OD], vs. 0.12 in HC). People who recovered from milder COVID-19 only reached similar IgG levels 28 days after symptom onset. IgM levels were elevated early in both groups (median 1.91 and 2.12 vs. 1.14 OD in HC for anti-S1 IgM, 2.23 and 2.26 vs 1.52 in HC for anti-E IgM), with downward trends in hospitalized cases having longer disease duration. The combination of the two IgM levels showed similar sensitivity for COVID-19 as IgG but greater specificity, and identified 4/10 people (vs. 3/10 by IgG) with prior symptoms and negative molecular testing to have had COVID-19. ConclusionsDisease severity and timing both influence levels of IgM and IgG against SARS-CoV-2, with IgG better for early detection of severe cases but IgM more suited for early detection of milder cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...