Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(10): 8077-8098, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38727100

ABSTRACT

Migration of immune cells to sites of inflammation is a critical step in the body's response to infections but also during autoimmune flares. Chemokine receptors, members of the GPCR receptors, are instrumental in directing specific cell types to their target organs. Herein, we describe a highly potent small molecule antagonist of the chemokine receptor CCR6, which came out of fine-tuned structural elaborations from a proprietary HTS hit. Three main issues in the parent chemical series-cytotoxicity, phototoxicity, and hERG, were successfully solved. Biological characterization demonstrated that compound 45 (IDOR-1117-2520) is a selective and insurmountable antagonist of CCR6. In vivo proof-of-mechanism studies in a mouse lung inflammation model using a representative compound from the chemical class of 45 confirmed that the targeted CCR6+ cells were efficiently inhibited from migrating into the bronchoalveoli. Finally, ADMET and physicochemical properties were well balanced and the preclinical package warranted progress in the clinic.


Subject(s)
Autoimmune Diseases , Receptors, CCR6 , Receptors, CCR6/antagonists & inhibitors , Receptors, CCR6/metabolism , Animals , Humans , Autoimmune Diseases/drug therapy , Mice , Structure-Activity Relationship , Drug Discovery
2.
J Med Chem ; 63(24): 15864-15882, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33314938

ABSTRACT

The chemokine receptor CXCR7, also known as ACKR3, is a seven-transmembrane G-protein-coupled receptor (GPCR) involved in various pathologies such as neurological diseases, autoimmune diseases, and cancers. By binding and scavenging the chemokines CXCL11 and CXCL12, CXCR7 regulates their extracellular levels. From an original high-throughput screening campaign emerged hit 3 among others. The hit-to-lead optimization led to the discovery of a novel chemotype series exemplified by the trans racemic compound 11i. This series provided CXCR7 antagonists that block CXCL11- and CXCL12-induced ß-arrestin recruitment. Further structural modifications on the trisubstituted piperidine scaffold of 11i yielded compounds with high CXCR7 antagonistic activities and balanced ADMET properties. The effort described herein culminated in the discovery of ACT-1004-1239 (28f). Biological characterization of ACT-1004-1239 demonstrated that it is a potent, insurmountable antagonist. Oral administration of ACT-1004-1239 in mice up to 100 mg/kg led to a dose-dependent increase of plasma CXCL12 concentration.


Subject(s)
Piperidines/chemistry , Receptors, CXCR/antagonists & inhibitors , Administration, Oral , Amides/chemistry , Amines/chemistry , Animals , Chemokine CXCL12/blood , Crystallography, X-Ray , Dogs , Drug Evaluation, Preclinical , Half-Life , Humans , Inhibitory Concentration 50 , Mice , Molecular Conformation , Piperidines/metabolism , Piperidines/pharmacokinetics , Protein Binding , Rats , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 20(21): 6286-90, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20843686

ABSTRACT

The discovery of a new series of piperidine-based renin inhibitors is described herein. SAR optimization upon the P3 renin sub-pocket is described, leading to the discovery of 9 and 41, two bioavailable renin inhibitors orally active at low doses in a transgenic rat model of hypertension.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Renin/antagonists & inhibitors , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Drug Design , Models, Molecular , Piperidines/chemistry , Protein Conformation , Rats , Structure-Activity Relationship , X-Ray Diffraction
4.
Bioorg Med Chem Lett ; 20(21): 6291-6, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20843690

ABSTRACT

The optimization of the 4-position of recently described new 3,4-disubstituted piperidine-based renin inhibitors is reported herein. The synthesis and characterization of compounds leading to the discovery of 11 (ACT-178882, MK-1597), a renin inhibitor with a suitable profile for development is described.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Renin/antagonists & inhibitors , Angiotensinogen/genetics , Animals , Animals, Genetically Modified , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/chemistry , Humans , Indicators and Reagents , Models, Molecular , Piperidines/chemistry , Rats , Renin/genetics , Stereoisomerism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 20(7): 2204-9, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20206513

ABSTRACT

The discovery and SAR of a new series of substituted amino propanamide renin inhibitors are herein described. This work has led to the preparation of compounds with in vitro and in vivo profiles suitable for further development. Specifically, challenges pertaining to oral bioavailability, covalent binding and time-dependent CYP 3A4 inhibition were overcome thereby culminating in the identification of compound 50 as an optimized renin inhibitor with good efficacy in the hypertensive double-transgenic rat model.


Subject(s)
Antihypertensive Agents/chemistry , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Renin/antagonists & inhibitors , Renin/metabolism , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Crystallography, X-Ray , Dogs , Humans , Models, Molecular , Protein Binding , Rats , Rats, Sprague-Dawley , Renin/chemistry , Structure-Activity Relationship
7.
J Med Chem ; 52(12): 3689-702, 2009 Jun 25.
Article in English | MEDLINE | ID: mdl-19358611

ABSTRACT

Starting from known piperidine renin inhibitors, a new series of 3,9-diazabicyclo[3.3.1]nonene derivatives was rationally designed and prepared. Optimization of the positions 3, 6, and 7 of the diazabicyclonene template led to potent renin inhibitors. The substituents attached at the positions 6 and 7 were essential for the binding affinity of these compounds for renin. The introduction of a substituent attached at the position 3 did not modify the binding affinity but allowed the modulation of the ADME properties. Our efforts led to the discovery of compound (+)-26g that inhibits renin with an IC(50) of 0.20 nM in buffer and 19 nM in plasma. The pharmacokinetics properties of this and other similar compounds are discussed. Compound (+)-26g is well absorbed in rats and efficacious at 10 mg/kg in vivo.


Subject(s)
Azabicyclo Compounds/chemical synthesis , Azabicyclo Compounds/pharmacology , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Renin/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Conformation , Structure-Activity Relationship
8.
J Biol Chem ; 280(25): 23837-43, 2005 Jun 24.
Article in English | MEDLINE | ID: mdl-15840589

ABSTRACT

The malaria parasite Plasmodium falciparum degrades host cell hemoglobin inside an acidic food vacuole during the blood stage of the infectious cycle. A number of aspartic proteinases called plasmepsins (PMs) have been identified to play important roles in this degradation process and therefore generated significant interest as new antimalarial targets. Several x-ray structures of PMII have been described previously, but thus far, structure-guided drug design has been hampered by the fact that only inhibitors comprising a statine moiety or derivatives thereof have been published. Our drug discovery efforts to find innovative, cheap, and easily synthesized inhibitors against aspartic proteinases yielded some highly potent non-peptidic achiral inhibitors. A highly resolved (1.6 A) x-ray structure of PMII is presented, featuring a potent achiral inhibitor in an unprecedented orientation, contacting the catalytic aspartates indirectly via the "catalytic" water. Major side chain rearrangements in the active site occur, which open up a new pocket and allow a new binding mode of the inhibitor. Moreover, a second inhibitor molecule could be located unambiguously in the active site of PMII. These newly obtained structural insights will further guide our attempts to improve compound properties eventually leading to the identification of molecules suitable as antimalarial drugs.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Enzyme Inhibitors/chemistry , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , Models, Molecular , Plasmodium falciparum/enzymology , Protozoan Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...