Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS ES T Water ; 4(4): 1381-1392, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633364

ABSTRACT

Evaluating persistent trace organic chemicals (TOrCs) and transformation products (TPs) in membrane bioreactors (MBRs) is essential, given that MBRs are now widely implemented for wastewater treatment and water reuse. This research applied comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS)-based nontargeted analysis to compare the effectiveness of parallel aerobic and anaerobic MBRs (AeMBRs and AnMBRs, respectively), treating the same municipal wastewater. The average total chromatographic feature peak area abundances were significantly reduced by 84% and 72% from influent to membrane permeate in both the AeMBR and AnMBR (p < 0.05), respectively. However, the reduction of the average number of chromatographic features was significant for only AeMBR treatment (p = 0.006). A similar number of TPs were generated during both AeMBR and AnMBR treatments (165 vs 171 compounds, respectively). The overall results suggest that the AeMBR was more effective for reducing the diversity of TOrCs than the AnMBR, but both aerobic and anaerobic processes had a similar reduction of TOrC abundance. Suspect screening analysis using GC×GC/TOF-MS, which resulted in the tentative identification of 351 TOrCs, proved to be a powerful approach for uncovering compounds previously unreported in wastewater, including many fragrances and personal care products.

2.
Chemosphere ; 352: 141138, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272136

ABSTRACT

Thirdhand smoke (THS) is the persistent and toxic residue from tobacco smoke in indoor environments. A comprehensive understanding of the chemical constituents of THS is necessary to assess the risks of long-term exposure and to establish reliable THS tracers. The objective of this study was to investigate compounds associated with THS through nontargeted analysis (NTA) of settled house dust samples from smokers' and non-smokers' homes, using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS). Compounds that were either only present in dust from smokers' homes or that had significantly larger abundance than in non-smokers' homes were termed qualified compounds. We identified 140 qualified compounds, and of these, 42 compounds were tentatively identified by searching matching mass spectra in NIST electron impact (EI) mass spectral library including 20 compounds confirmed with their authentic standards. Among the 42 compounds, 26 compounds were statistically more abundant (p < 0.10) in dust from homes of smokers; seven were tobacco-specific compounds, two of which (nornicotyrine, 3-ethenylpyridine) have not been reported before in house dust. Two compounds, tris (2-chloroethyl) phosphate (a toxic compound used as a flame retardant and reported in tobacco) and propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester (highly abundant and reported in exhaled air of smokers), were found in dust from all smokers' homes and in zero non-smokers' homes, making these potential THS tracers, possibly associated with recent smoking. Benzyl methyl ketone was significantly higher in dust in smokers' homes, and was previously reported not as a product of tobacco but rather as a form of methamphetamine. This compound was recently reported in mainstream tobacco smoke condensate through NTA as well. These identified potential tracers and chemical components of THS in this study can be further investigated for use in developing THS contamination and exposure assessments.


Subject(s)
Air Pollution, Indoor , Organophosphates , Tobacco Smoke Pollution , Air Pollution, Indoor/analysis , Dust/analysis , Nicotine/analysis , Tobacco Smoke Pollution/analysis
3.
Chem Res Toxicol ; 36(11): 1703-1710, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37827523

ABSTRACT

Cigarette butts are one of the most prevalent forms of litter worldwide and may leach toxic compounds when deposited in aquatic environments. Previous studies demonstrated that smoked cigarette leachate is toxic toward aquatic organisms. However, the specific bioavailable chemicals from the leachate and the potential for human and wildlife exposure through the food chain were unknown. Using a nontargeted analytical approach based on GC×GC/TOF-MS, 43 compounds were confirmed to leach from smoked cigarettes when exposed to a water source. Additionally, the bioaccumulation potential of organic contaminants in an edible fish, rainbow trout (Oncorhynchus mykiss), was assessed through direct exposure to the leachate of smoked cigarettes at 0.5 CB/L for 28 days. There was a significant reduction in fish mass among the exposed rainbow trout vs the control group (χ2 (1) = 5.3, p = 0.021). Both nontargeted and targeted chemical analysis of representative fish tissue identified four tobacco alkaloids, nicotine, nicotyrine, myosmine, and 2,2'-bipyridine. Their average tissue concentrations were 466, 55.4, 94.1, and 70.8 ng/g, respectively. This study identifies leached compounds from smoked cigarettes and demonstrates the uptake of specific chemicals in rainbow trout, thus suggesting a potential for accumulation in food webs, resulting in human and wildlife exposure.


Subject(s)
Oncorhynchus mykiss , Animals , Humans , Bioaccumulation , Nicotine , Chromatography, Gas , Food Chain , Nicotiana
4.
J Chromatogr A ; 1660: 462656, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34798444

ABSTRACT

Nontargeted analysis based on mass spectrometry is a rising practice in environmental monitoring for identifying contaminants of emerging concern. Nontargeted analysis performed using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC/TOF-MS) generates large numbers of possible analytes. Moreover, the default spectral library similarity score-based search algorithm used by LECO® ChromaTOF® does not ensure that high similarity scores result in correct library matches. Therefore, an additional manual screening is necessary, but leads to human errors especially when dealing with large amounts of data. To improve the speed and accuracy of the chemical identification, we developed CINeMA.py (Classification Is Never Manual Again). This programming suite automates GC×GC/TOF-MS data interpretation by determining the confidence of a match between the observed analyte mass spectrum and the LECO® ChromaTOF® software generated library hit from the NIST Electron Ionization Mass Spectral (NIST EI-MS) library. Our script allows the user to evaluate the confidence of the match using an algorithmic method that mimics the manual curation process and two different machine learning approaches (neural networks and random forest). The script allows the user to adjust various parameters (e.g., similarity threshold) and study their effects on prediction accuracy. To test CINeMA.py, we used data from two different environmental contaminant studies: an EPA study on household dust and a study on stormwater runoff. Using a reference set based on the analysis performed by highly trained users of the ChromaTOF and GC×GC/TOF-MS systems, the random forest model had the highest prediction accuracies of 86% and 83% on the EPA and Stormwater data sets, respectively. The algorithmic approach had the second-best prediction accuracy (82% and 79%), while the neural network accuracy had the lowest (63% and 67%). All the approaches required less than 1 min to classify 986 observed analytes, whereas manual data analysis required hours or days to complete. Our methods were also able to detect high confidence matches missed during the manual review. Overall, CINeMA.py provides users with a powerful suite of tools that should significantly speed-up data analysis while reducing the possibilities of manual errors and discrepancies among users, and can be applicable to other GC/EI-MS instrument based nontargeted analysis.


Subject(s)
Electrons , Software , Algorithms , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Humans
5.
Integr Environ Assess Manag ; 17(6): 1179-1193, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34009690

ABSTRACT

Wildfires can be extremely destructive to communities and ecosystems. However, the full scope of the ecological damage is often hard to assess, in part due to limited information on the types of chemicals introduced to affected landscapes and waterways. The objective of this study was to establish a sampling, analytical, and interpretive framework to effectively identify and monitor contaminants of emerging concern in environmental water samples impacted by wildfire runoff. A nontargeted analysis consisting of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS) was conducted on stormwater samples from watersheds in the City of Santa Rosa and Sonoma and Napa Counties, USA, after the three most destructive fires during the October 2017 Northern California firestorm. Chemicals potentially related to wildfires were selected from the thousands of chromatographic features detected through a screening method that compared samples from fire-impacted sites versus unburned reference sites. This screening led to high confidence identifications of 76 potentially fire-related compounds. Authentic standards were available for 48 of these analytes, and 46 were confirmed by matching mass spectra and GC × GC retention times. Of these 46 compounds, 37 had known commercial and industrial uses as intermediates or ingredients in plastics, personal care products, pesticides, and as food additives. Nine compounds had no known uses or sources and may be oxidation products resulting from burning of natural or anthropogenic materials. Preliminary examination of potential toxicity associated with the 46 compounds, conducted via online databases and literature review, indicated limited data availability. Regional comparison suggested that more structural damage may yield a greater number of unique, potentially wildfire-related compounds. We recommend further study of post-wildfire runoff using the framework described here, which includes hypothesis-driven site selection and nontargeted analysis, to uncover potentially significant stormwater contaminants not routinely monitored after wildfires and inform risk assessment. Integr Environ Assess Manag 2021;17:1179-1193. © 2021 SETAC.


Subject(s)
Water Pollutants, Chemical , Wildfires , Ecosystem , Environmental Monitoring , San Francisco , Water Pollutants, Chemical/analysis
6.
Chem Res Toxicol ; 32(8): 1670-1679, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31286770

ABSTRACT

Smoked cigarettes are the most prevalent form of litter worldwide, often finding their way into oceans and inland waterways. Cigarette smoke contains more than 4000 individual chemicals, some of them carcinogenic or otherwise toxic. We examined the cytotoxicity, genotoxicity, aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and p53 response pathways of smoked cigarette leachate in vitro. Both seawater and freshwater leachates of smoked cigarettes were tested. Cytotoxicity and genotoxicity were negligible at 100 smoked cigarettes/L, while statistically significant AhR, ER, and p53 responses were observed in the extracts of both leachates, suggesting a potential risk to human health through exposure to cigarette litter in the environment. To identify responsible chemicals for the AhR response, an effect directed analysis approach was coupled with nontargeted chemical analysis based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS). Eleven compounds potentially responsible for the AhR response were identified. Among them, 2-methylindole was partially responsible for the AhR response.


Subject(s)
Salmonella typhimurium/drug effects , Smoke/adverse effects , Tobacco Products/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Animals , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Estrogen/metabolism , Salmonella typhimurium/genetics , Smoke/analysis , Solid Phase Extraction , Tobacco Products/analysis , Toxicity Tests , Tumor Suppressor Protein p53/metabolism , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...