Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Food Microbiol ; 119: 104431, 2024 May.
Article in English | MEDLINE | ID: mdl-38225041

ABSTRACT

Isolation of Salmonella from enrichment cultures of food or environmental samples is a complicated process. Numerous factors including fitness in various selective enrichment media, relative starting concentrations in pre-enrichment, and competition among multi-serovar populations and associated natural microflora, come together to determine which serovars are identified from a given sample. A recently developed approach for assessing the relative abundance (RA) of multi-serovar Salmonella populations (CRISPR-SeroSeq or Deep Serotyping, DST) is providing new insight into how these factors impact the serovars observed, especially when different selective enrichment methods are used to identify Salmonella from a primary enrichment sample. To illustrate this, we examined Salmonella-positive poultry pre-enrichment samples through the selective enrichment process in Tetrathionate (TT) and Rappaport Vassiliadis (RVS) broths and assessed recovery of serovars with each medium. We observed the RA of serovars detected post selective enrichment varied depending on the medium used, initial concentration, and competitive fitness factors, all which could result in minority serovars in pre-enrichment becoming dominant serovars post selective enrichment. The data presented provide a greater understanding of culture biases and lays the groundwork for investigations into robust enrichment and plating media combinations for detecting Salmonella serovars of greater concern for human health.


Subject(s)
Salmonella enterica , Animals , Humans , Salmonella enterica/genetics , Serogroup , Poultry , Salmonella/genetics , Serotyping/methods , Culture Media
2.
J Food Prot ; 87(3): 100208, 2024 03.
Article in English | MEDLINE | ID: mdl-38142825

ABSTRACT

Nearly 20% of salmonellosis cases are attributed to broilers, with renewed efforts to reduce Salmonella during broiler production and processing. A limitation to Salmonella culture is that often a single colony is picked for characterization, favoring isolation of the most abundant serovar found in a sample, while low abundance serovars can remain undetected. We used a deep serotyping approach, CRISPR-SeroSeq (serotyping by sequencing the clustered regularly interspaced palindromic repeats), to assess Salmonella serovar complexity during broiler processing and to determine the impact of antimicrobial interventions upon serovar population dynamics. Paired hot rehang and postchill young chicken carcasses were collected from establishments across the United States from August to November 2022. CRISPR-SeroSeq was performed on Salmonella culture-positive hot rehang (n = 153) and postchill (n = 38) samples, including 31 paired hot rehang and postchill samples. Multiple serovars were detected in 48.4% (74/153) and 7.9% (3/38) of hot rehang and postchill samples, respectively. On average, hot rehang carcasses contained 1.6 serovars, compared to 1.1 serovars at postchill (Mann Whitney U, p = 0.00018). Nineteen serovars were identified with serovar Kentucky the most common at hot rehang (72.5%; 111/153) and postchill (73.7%; 28/38). Serovar Infantis prevalence was higher at hot rehang (39.9%; 61/153) than in postchill (7.9%; 3/38). At hot rehang, serovar Enteritidis was outnumbered by other serovars 81.3% (13/16) of the time but was always the single or most abundant serovar detected when it was present at postchill (n = 5). We observed 98.4% (188/191) concordance between traditional isolation with serotyping and CRISPR-SeroSeq. Deep serotyping was able to explain serovar discrepancies between paired hot rehang and postchill samples when only traditional isolation and serotyping methods were used. These data demonstrate that processing interventions are effective in reducing Salmonella serovar complexity.


Subject(s)
Chickens , Poultry , Animals , United States , Serogroup , Serotyping/methods , Salmonella
3.
Microb Genom ; 9(9)2023 09.
Article in English | MEDLINE | ID: mdl-37750759

ABSTRACT

Non-typhoidal Salmonella are extremely diverse and different serovars can exhibit varied phenotypes, including host adaptation and the ability to cause clinical illness in animals and humans. In the USA, Salmonella enterica serovar Kentucky is infrequently found to cause human illness, despite being the top serovar isolated from broiler chickens. Conversely, in Europe, this serovar falls in the top 10 serovars linked to human salmonellosis. Serovar Kentucky is polyphyletic and has two lineages, Kentucky-I and Kentucky-II; isolates belonging to Kentucky-I are frequently isolated from poultry in the USA, while Kentucky-II isolates tend to be associated with human illness. In this study, we analysed whole-genome sequences and associated metadata deposited in public databases between 2017 and 2021 by federal agencies to determine serovar Kentucky incidence across different animal and human sources. Of 5151 genomes, 90.3 % were from isolates that came from broilers, while 5.9 % were from humans and 3.0 % were from cattle. Kentucky-I isolates were associated with broilers, while isolates belonging to Kentucky-II and a new lineage, Kentucky-III, were more commonly associated with cattle and humans. Very few serovar Kentucky isolates were associated with turkey and swine sources. Phylogenetic analyses showed that Kentucky-III genomes were more closely related to Kentucky-I, and this was confirmed by CRISPR-typing and multilocus sequence typing (MLST). In a macrophage assay, serovar Kentucky-II isolates were able to replicate over eight times better than Kentucky-I isolates. Analysis of virulence factors showed unique patterns across these three groups, and these differences may be linked to their association with different hosts.


Subject(s)
Salmonella enterica , Humans , Animals , Cattle , Swine , Serogroup , Salmonella enterica/genetics , Chickens , Kentucky , Multilocus Sequence Typing , Phylogeny , Genomics , Phenotype
4.
Microbiol Spectr ; : e0414722, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36861983

ABSTRACT

We tested the hypothesis that Campylobacter isolated from chicken ceca and river water in an overlapping geographic area would share genetic information. Isolates of C. jejuni from chicken ceca were collected from a commercial slaughter plant and isolates of C. jejuni were also collected from rivers and creeks in the same watershed. Isolates were subjected to whole-genome sequencing and the data were used for core genome multilocus sequence typing (cgMLST). Cluster analysis showed that there were four distinct subpopulations, two from chickens and two from water. Calculation of fixation statistic (Fst) showed that all four subpopulations were significantly distinct. Greater than 90% of the loci were differentiated by subpopulation. Only two genes showed clear differentiation of both chicken subpopulations from both water subpopulations. Sequence fragments of the CJIE4 bacteriophage family were found frequently in the main chicken subpopulation and the water outgroup subpopulation but were sparsely found in the main water population and not at all in the chicken outgroup. CRISPR spacers that targeted the phage sequences were common in the main water subpopulation, only once in the main chicken subpopulation, and not at all in the chicken or water outgroups. Restriction enzyme genes also showed a biased distribution. These data suggest that there is little transfer of C. jejuni genetic material between chickens and nearby river water. Campylobacter differentiation according to these two sources does not show clear evidence of evolutionary selection; the differentiation is probably due to geospatial isolation, genetic drift, and the action of CRISPRs and restriction enzymes. IMPORTANCE Campylobacter jejuni causes gastroenteritis in humans, and chickens and environmental water are leading sources of infection. We tested the hypothesis that Campylobacter isolated from chicken ceca and river water in an overlapping geographic area would share genetic information. Isolates of Campylobacter were collected from water and chicken sources in the same watershed and their genomes were sequenced and analyzed. Four distinct subpopulations were found. There was no evidence of sharing genetic material between the subpopulations. Phage profiles, CRISPR profiles and restriction systems differed by subpopulation.

5.
J Food Prot ; 86(2): 100033, 2023 02.
Article in English | MEDLINE | ID: mdl-36916571

ABSTRACT

Salmonella enterica is a major cause of human foodborne illness and is often attributed to poultry food sources. S. enterica serovar Infantis, specifically those carrying the pESI plasmid, has become a frequently isolated serotype from poultry meat samples at processing and has caused numerous recent human infections. In 2016, the USDA-Food Safety and Inspection Service changed the official sampling method for raw poultry products from BPW to using neutralizing BPW (nBPW) as the rinsing agent in order to prevent residual antimicrobial effects from acidifying and oxidizing processing aids. This change was contemporaneous to the emergence of pESI-positive ser. Infantis as a prevalent serovar in poultry, prompting some to question if nBPW could be selecting for this prevalent serovar. We performed two experiments: a comparison of ser. Infantis growth in BPW versus nBPW, and a simulation of regulatory sampling methods. We found that when inoculated into both broths, ser. Infantis initially grows slightly slower in nBPW than in BPW but little difference was seen in abundance after 6 h of growth. Additionally, the use of nBPW to simulate poultry rinse sample and overnight cold shipping to a regulatory lab did not affect the survival or subsequent growth of ser. Infantis in BPW. We concluded that the change in USDA-FSIS methodology to include nBPW in sampling procedures has likely not affected the emergence of S. ser. Infantis as a prevalent serovar in chicken and turkey meat product samples.


Subject(s)
Salmonella enterica , Animals , Humans , Serogroup , Peptones , Water , Poultry , Chickens
6.
J Appl Microbiol ; 132(3): 2410-2420, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34821433

ABSTRACT

AIMS: Salmonella is extremely diverse, with >2500 serovars that are genetically and phenotypically diverse. The aim of this study was to build a collection of Salmonella isolates that are genetically diverse and to evaluate their ability to form biofilm under different conditions relevant to a processing environment. METHODS AND RESULTS: Twenty Salmonella isolates representative of 10 serovars were subtyped using Clustered regularly interspaced short palindromic repeats (CRISPR)-typing to assess the genetic diversity between isolates of each serovar. Biofilm formation of the isolates on both plastic and stainless-steel surfaces at 25 and 15°C was assessed. At 25°C, 8/20 isolates each produced strong and moderate biofilm on plastic surface compared to stainless-steel (3/20 and 13/20 respectively). At 15°C, 5/20 produced strong biofilm on plastic surface and none on stainless-steel. Several isolates produced weak biofilm on plastic (11/20) and stainless-steel (16/20) surfaces. Serovar Schwarzengrund consistently produced strong biofilm while serovars Heidelberg and Newport produced weak biofilm. CONCLUSION: These results suggest that Salmonellae differ in their attachment depending on the surface and temperature conditions encountered, which may influence persistence in the processing environment. SIGNIFICANCE AND IMPACT OF STUDY: These differences in biofilm formation could provide useful information for mitigation of Salmonella in processing environments.


Subject(s)
Bacterial Adhesion , Salmonella , Biofilms , Salmonella/genetics , Serogroup , Stainless Steel , Temperature
7.
J Cell Sci ; 131(3)2018 02 07.
Article in English | MEDLINE | ID: mdl-29222113

ABSTRACT

Myosins are critical motor proteins that contribute to the secretory pathway, polarized growth, and cytokinesis. The globular tail domains of class V myosins have been shown to be important for cargo binding and actin cable organization. Additionally, phosphorylation plays a role in class V myosin cargo choice. Our previous studies on the class V myosin MyoE in the fungal pathogen Aspergillus fumigatus confirmed its requirement for normal morphology and virulence. However, the domains and molecular mechanisms governing the functions of MyoE remain unknown. Here, by analyzing tail mutants, we demonstrate that the tail is required for radial growth, conidiation, septation frequency and MyoE's location at the septum. Furthermore, MyoE is phosphorylated at multiple residues in vivo; however, alanine substitution mutants revealed that no single phosphorylated residue was critical. Importantly, in the absence of the phosphatase calcineurin, an additional residue was phosphorylated in its tail domain. Mutation of this tail residue led to mislocalization of MyoE from the septa. This work reveals the importance of the MyoE tail domain and its phosphorylation/dephosphorylation in the growth and morphology of A. fumigatus.


Subject(s)
Aspergillus fumigatus/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hyphae/growth & development , Myosin Type V/chemistry , Myosin Type V/metabolism , Acetylation , Actins/metabolism , Calcineurin/metabolism , Conserved Sequence , Microtubules/metabolism , Models, Biological , Mutant Proteins/metabolism , Phenotype , Phosphorylation , Protein Domains , Protein Subunits/metabolism , Protein Transport , Sequence Deletion , Spores, Fungal/metabolism , Structure-Activity Relationship
8.
Front Microbiol ; 7: 997, 2016.
Article in English | MEDLINE | ID: mdl-27446037

ABSTRACT

Septins are a conserved family of GTPases that form hetero-oligomeric complexes and perform diverse functions in higher eukaryotes, excluding plants. Our previous studies in the human fungal pathogen Aspergillus fumigatus revealed that the core septin, AspB, a CDC3 ortholog, is required for septation, conidiation, and conidial cell wall organization. Although AspB is important for these cellular functions, nothing is known about the role of kinases or phosphatases in the posttranslational regulation and localization of septins in A. fumigatus. In this study, we assessed the function of the Gin4 and Cla4 kinases and the PP2A regulatory subunit ParA, in the regulation of AspB using genetic and phosphoproteomic approaches. Gene deletion analyses revealed that Cla4 and ParA are indispensable for hyphal extension, and Gin4, Cla4, and ParA are each required for conidiation and normal septation. While deletion of gin4 resulted in larger interseptal distances and hypervirulence, a phenotype mimicking aspB deletion, deletion of cla4 and parA caused hyperseptation without impacting virulence, indicating divergent roles in regulating septation. Phosphoproteomic analyses revealed that AspB is phosphorylated at five residues in the GTPase domain (S134, S137, S247, T297, and T301) and two residues at its C-terminus (S416 and S461) in the wild-type, Δgin4 and Δcla4 strains. However, concomitant with the differential localization pattern of AspB and hyperseptation in the ΔparA strain, AspB remained phosphorylated at two additional residues, T68 in the N-terminal polybasic region and S447 in the coiled-coil domain. Generation of nonphosphorylatable and phosphomimetic strains surrounding each differentially phosphorylated residue revealed that only AspB (mt) -T68E showed increased interseptal distances, suggesting that dephosphorylation of T68 is important for proper septation. This study highlights the importance of septin phosphorylation/dephosphorylation in the regulation of A. fumigatus hyphal septation.

10.
Infect Immun ; 84(5): 1556-64, 2016 05.
Article in English | MEDLINE | ID: mdl-26953327

ABSTRACT

Myosins are a family of actin-based motor proteins found in many organisms and are categorized into classes based on their structures. Class II and V myosins are known to be important for critical cellular processes, including cytokinesis, endocytosis, exocytosis, and organelle trafficking, in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans However, the roles of myosins in the growth and virulence of the pathogen Aspergillus fumigatus are unknown. We constructed single- and double-deletion strains of the class II and class V myosins in A. fumigatus and found that while the class II myosin (myoB) is dispensable for growth, the class V myosin (myoE) is required for proper hyphal extension; deletion of myoE resulted in hyperbranching and loss of hyphal polarity. Both myoB and myoE are necessary for proper septation, conidiation, and conidial germination, but only myoB is required for conidial viability. Infection with the ΔmyoE strain in the invertebrate Galleria mellonella model and also in a persistently immunosuppressed murine model of invasive aspergillosis resulted in hypovirulence, while analysis of bronchoalveolar lavage fluid revealed that tumor necrosis factor alpha (TNF-α) release and cellular infiltration were similar compared to those of the wild-type strain. The ΔmyoE strain showed fungal growth in the murine lung, while the ΔmyoB strain exhibited little fungal burden, most likely due to the reduced conidial viability. These results show, for the first time, the important role these cytoskeletal components play in the growth of and disease caused by a known pathogen, prompting future studies to understand their regulation and potential targeting for novel antifungal therapies.


Subject(s)
Aspergillus fumigatus/growth & development , Aspergillus fumigatus/pathogenicity , Fungal Proteins/metabolism , Hyphae/growth & development , Myosins/metabolism , Animals , Aspergillosis/microbiology , Aspergillosis/pathology , Aspergillus fumigatus/genetics , Colony Count, Microbial , Fungal Proteins/genetics , Gene Knockout Techniques , Lung/microbiology , Male , Mice , Microbial Viability , Myosins/deficiency , Spores, Fungal/growth & development , Virulence
11.
Emerg Med Clin North Am ; 34(1): 77-96, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26614243

ABSTRACT

Respiratory emergencies are 1 of the most common reasons parents seek evaluation for the their children in the emergency department (ED) each year, and respiratory failure is the most common cause of cardiopulmonary arrest in pediatric patients. Whereas many respiratory illnesses are mild and self-limiting, others are life threatening and require prompt diagnosis and management. Therefore, it is imperative that emergency clinicians be able to promptly recognize and manage these illnesses. This article reviews ED diagnosis and management of foreign body aspiration, asthma exacerbation, epiglottitis, bronchiolitis, community-acquired pneumonia, and pertussis.


Subject(s)
Emergency Treatment/methods , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/therapy , Airway Obstruction/therapy , Child , Child, Preschool , Disease Management , Humans , Infant , Respiratory Insufficiency/therapy
12.
PLoS One ; 10(9): e0137869, 2015.
Article in English | MEDLINE | ID: mdl-26366742

ABSTRACT

Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.


Subject(s)
Aspergillus fumigatus/genetics , Tacrolimus Binding Protein 1A/genetics , Animals , Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/pathogenicity , Calcineurin/metabolism , Caspofungin , Cyclosporine/pharmacology , Echinocandins/pharmacology , Gene Deletion , Humans , Hyphae/drug effects , Hyphae/genetics , Hyphae/growth & development , Lipopeptides , Microbial Sensitivity Tests , Moths/microbiology , Phylogeny , Tacrolimus/metabolism , Tacrolimus/pharmacology , Tacrolimus Binding Protein 1A/metabolism
13.
Fungal Genet Biol ; 81: 41-51, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26051489

ABSTRACT

Septins are a conserved family of GTPases that regulate important cellular processes such as cell wall integrity, and septation in fungi. The requirement of septins for virulence has been demonstrated in the human pathogenic yeasts Candida albicans and Cryptococcus neoformans, as well as the plant pathogen Magnaporthe oryzae. Aspergillus spp. contains five genes encoding for septins (aspA-E). While the importance of septins AspA, AspB, AspC, and AspE for growth and conidiation has been elucidated in the filamentous fungal model Aspergillus nidulans, nothing is known on the role of septins in growth and virulence in the human pathogen Aspergillus fumigatus. Here we deleted all five A. fumigatus septins, and generated certain double and triple septin deletion strains. Phenotypic analyses revealed that while all the septins are dispensable in normal growth conditions, AspA, AspB, AspC and AspE are required for regular septation. Furthermore, deletion of only the core septin genes significantly reduced conidiation. Concomitant with the absence of an electron-dense outer conidial wall, the ΔaspB strain was also sensitive to anti-cell wall agents. Infection with the ΔaspB strain in a Galleria mellonella model of invasive aspergillosis showed hypervirulence, but no virulence difference was noted when compared to the wild-type strain in a murine model of invasive aspergillosis. Although the deletion of aspB resulted in increased release of TNF-α from the macrophages, no significant inflammation differences in lung histology was noted between the ΔaspB strain and the wild-type strain. Taken together, these results point to the importance of septins in A. fumigatus growth, but not virulence in a murine model.


Subject(s)
Aspergillus fumigatus/physiology , Cell Division , Cell Wall/metabolism , Septins/metabolism , Spores, Fungal/growth & development , Animals , Aspergillosis/microbiology , Aspergillosis/pathology , Aspergillus fumigatus/genetics , Disease Models, Animal , Gene Deletion , Lepidoptera/microbiology , Lepidoptera/physiology , Mice , Septins/genetics , Virulence
15.
Front Microbiol ; 6: 175, 2015.
Article in English | MEDLINE | ID: mdl-25821446

ABSTRACT

Calcineurin is a key protein phosphatase required for hyphal growth and virulence in Aspergillus fumigatus, making it an attractive antifungal target. However, currently available calcineurin inhibitors, FK506 and cyclosporine A, are immunosuppressive, limiting usage in the treatment of patients with invasive aspergillosis. Therefore, the identification of endogenous inhibitors of calcineurin belonging to the calcipressin family is an important parallel strategy. We previously identified the gene cbpA as the A. fumigatus calcipressin member and showed its involvement in hyphal growth and calcium homeostasis. However, the mechanism of its activation/inhibition through phosphorylation and its interaction with calcineurin remains unknown. Here we show that A. fumigatus CbpA is phosphorylated at three distinct domains, including the conserved SP repeat motif (phosphorylated domain-I; PD-I), a filamentous fungal-specific domain (PD-II), and the C-terminal CIC motif (Calcipressin Inhibitor of Calcineurin; PD-III). While mutation of three phosphorylated residues (Ser208, Ser217, Ser223) in the PD-II did not affect CbpA function in vivo, mutation of the two phosphorylated serines (Ser156, Ser160) in the SP repeat motif caused reduced hyphal growth and sensitivity to oxidative stress. Mutational analysis in the key domains in calcineurin A (CnaA) and proteomic interaction studies confirmed the requirement of PxIxIT motif-binding residues (352-NIR-354) and the calcineurin B (CnaB)-binding helix residue (V371) for the binding of CbpA to CnaA. Additionally, while the calmodulin-binding residues (442-RVF-444) did not affect CbpA binding to CnaA, three mutations (T359P, H361L, and L365S) clustered between the CnaA catalytic and the CnaB-binding helix were also required for CbpA binding. This is the first study to analyze the phosphorylation status of calcipressin in filamentous fungi and identify the domains required for binding to calcineurin.

18.
Pediatr Phys Ther ; 24(4): 321-6, 2012.
Article in English | MEDLINE | ID: mdl-22965202

ABSTRACT

PURPOSE: To present the effects of TheraTogs and twister cables (TCs) on in-toeing during gait in a child with spina bifida while comparing overall parent and patient satisfaction. CASE DESCRIPTION: The participant was a 2-year-old girl with L4 spina bifida with bilateral in-toeing during gait. INTERVENTION: The child was given a 6-week intervention of TheraTogs followed by 6 weeks of TCs. OUTCOMES: Kinematic data indicated optimal foot progression with the use of TCs, achieved by the rotation of the lower leg. Gait data for the use of TheraTogs indicated improved foot progression with external rotation at the hips. Gait characteristics indicated improved gait velocity in TheraTogs, but stride length was better with TCs. The parent reported satisfaction and preference for TheraTogs. CONCLUSION: As the first step in investigating the 2 interventions, both TheraTogs and TCs were effective in management of in-toeing for the child but parental preference favored TheraTogs.


Subject(s)
Foot Orthoses , Gait Disorders, Neurologic/rehabilitation , Gait , Spinal Dysraphism/rehabilitation , Toes , Biomechanical Phenomena , Disability Evaluation , Female , Humans , Patient Satisfaction
19.
Int J Pediatr Otorhinolaryngol ; 71(1): 125-33, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17126413

ABSTRACT

OBJECTIVE: Distortion product otoacoustic emissions (DPOAEs) (9-16kHz) are a useful measure of the function of the cochlea, which may be damaged by ototoxic drugs during anticancer chemotherapy. As children undergoing chemotherapy may also have middle ear problems, it is necessary to know if middle ear problems would have a confounding effect on the ability of DPOAEs to assess cochlear function in the extend high frequency region (9-16kHz). The present study aimed to investigate the effect of middle ear dysfunction on DPOAEs in the extended high frequency region in young children. METHODS: The sample was comprised of 100 ears of 50 school-aged children (21 boys and 29 girls) with a mean age of 6.3 years (S.D.=0.5; range 5.3-7.3). Otoscopy, pure tone hearing screening, tympanometry, acoustic reflexes and DPOAEs for both the conventional and extended high frequencies were administered to each child under typical school screening conditions. Participants were classified into one of three groups based on immittance (tympanometry and acoustic reflex) results. They included a "pass immittance" group, a "fail immittance" group and an "undetermined" group (with a pass in either tympanometry or acoustic reflexes, but not both). DPOAE amplitudes and signal-to-noise ratios (SNRs) were measured and compared across the three groups of participants. RESULTS: The fail immittance group showed significantly smaller DPOAE amplitudes and SNRs when compared to the other two groups at frequencies ranging from 1 to 9.5kHz and at 13kHz, but not at 10, 11, 12 and 14kHz. There was no significant difference in DPOAE results between the pass immittance and undetermined groups. CONCLUSIONS: Despite the adverse effects of middle ear dysfunction, its effect on DPOAEs in the extended high frequency region was not as severe as that in the lower frequency region. Hence, assessment of cochlear function in children with a middle ear lesion in the extended high frequencies using DPOAEs should be made with caution.


Subject(s)
Hearing Loss, High-Frequency/diagnosis , Otitis Media/physiopathology , Otoacoustic Emissions, Spontaneous/physiology , Analysis of Variance , Child , Child, Preschool , Female , Hearing Loss, High-Frequency/physiopathology , Hearing Tests , Humans , Male , Otoscopy , Reflex, Acoustic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...