Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Wildl Dis ; 57(1): 19-26, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33635967

ABSTRACT

Bacterial kidney disease, caused by Renibacterium salmoninarum, threatens salmonids worldwide. Following devastating mortality episodes in Oncorhynchus spp. in Lake Michigan, US, in the 1980s and infection rates >90%, pathogen prevalence has steadily declined to <5% over three decades in the three state-managed stocks. In this study, we sought to determine if the declining infection rates were associated with heightened circulating antibodies in state-managed Oncorhynchus spp. residing in the Lake Michigan watershed. A single-dilution, indirect enzyme-linked immunosorbent assay (ELISA) was modified to detect circulating antibodies against R. salmoninarum. Baseline values were delineated from naive chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss). The assay was first used to assess primary antibody production over a 4-wk period in chinook salmon experimentally infected with R. salmoninarum. Mean antibody response was detected as early as 2 wk postinfection and continued to increase to the end of the observation period. The modified ELISA was then used to detect antibodies in serum samples collected from feral adult chinook salmon, coho salmon (Oncorhynchus kisutch), and steelhead trout (O. mykiss) returning to spawn at Lake Michigan weirs in 2009 and 2013. Results demonstrated that about 80% of feral Oncorhynchus spp. had measurable titers of circulating antibodies to R. salmoninarum. The relative ease and reasonable costs of this modified ELISA makes it a valuable serosurveillance tool for assessing the humoral immune status of feral salmonid populations.


Subject(s)
Antibodies, Bacterial/blood , Fish Diseases/microbiology , Oncorhynchus , Animals , Fish Diseases/blood , Fish Diseases/immunology , Great Lakes Region , Lakes , Renibacterium/immunology
2.
Prev Vet Med ; 145: 110-120, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28903867

ABSTRACT

Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum, threatens salmonid populations throughout the Northern hemisphere. Many fishery regulatory authorities require ongoing disease monitoring in hatcheries and spawning runs prior to gamete collection to prevent BKD outbreaks and spread. According to diagnostic protocols of the American Fisheries Society-Fish Health Section, monitoring for R. salmoninarum generally consists of lethal sampling of visceral organs from fish. However, non-lethal sampling would be preferable, especially for valuable broodstock or endangered species. In this study, non-lethal sampling methods were evaluated for their ability to detect R. salmoninarum in Chinook salmon (Oncorhynchus tshawytscha) that were experimentally infected via two different routes (e.g., intraperitoneal injection and waterborne immersion) to mimic acute and chronic disease courses. Non-lethal (e.g., blood, mucus, and a urine/feces mixture) and lethal (e.g., kidney and spleen homogenate) samples were collected from challenged and mock-challenged Chinook salmon and the presence of R. salmoninarum was assessed by culture on modified kidney disease medium, nested polymerase chain reaction (nPCR), and semi-quantitative enzyme-linked immunosorbent assay (ELISA). Sensitivity, specificity, and accuracy of lethal and non-lethal samples in detecting R. salmoninarum were calculated using receiver operating characteristic (ROC) analyses. For ROC analyses, true disease status was evaluated under two different assumptions: 1) that lethal samples represented the true disease status and 2) that all experimentally challenged fish were truly infected. We found that sensitivity and specificity of non-lethal samples depended upon time of sampling after experimental infection, sample type, and R. salmoninarum exposure route. Uro-fecal samples had the greatest potential as non-lethal samples compared to mucus and blood. In terms of future monitoring, combining lethal samples tested by ELISA assay with uro-fecal samples tested by nPCR could be the best strategy for detecting R. salmoninarum prevalence in a population as it reduces the overall number of fish required for sampling.


Subject(s)
Fish Diseases/diagnosis , Gram-Positive Bacterial Infections/veterinary , Micrococcaceae/isolation & purification , Salmon , Animals , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Fish Diseases/microbiology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...