Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pulm Med ; 14: 3, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24405692

ABSTRACT

BACKGROUND: S-nitrosoglutathione (GSNO) serves as a reservoir for nitric oxide (NO) and thus is a key homeostatic regulator of airway smooth muscle tone and inflammation. Decreased levels of GSNO in the lungs of asthmatics have been attributed to increased GSNO catabolism via GSNO reductase (GSNOR) leading to loss of GSNO- and NO- mediated bronchodilatory and anti-inflammatory actions. GSNOR inhibition with the novel small molecule, N6022, was explored as a therapeutic approach in an experimental model of asthma. METHODS: Female BALB/c mice were sensitized and subsequently challenged with ovalbumin (OVA). Efficacy was determined by measuring both airway hyper-responsiveness (AHR) upon methacholine (MCh) challenge using whole body plethysmography and pulmonary eosinophilia by quantifying the numbers of these cells in the bronchoalveolar lavage fluid (BALF). Several other potential biomarkers of GSNOR inhibition were measured including levels of nitrite, cyclic guanosine monophosphate (cGMP), and inflammatory cytokines, as well as DNA binding activity of nuclear factor kappa B (NFκB). The dose response, onset of action, and duration of action of a single intravenous dose of N6022 given from 30 min to 48 h prior to MCh challenge were determined and compared to effects in mice not sensitized to OVA. The direct effect of N6022 on airway smooth muscle tone also was assessed in isolated rat tracheal rings. RESULTS: N6022 attenuated AHR (ED50 of 0.015 ± 0.002 mg/kg; Mean ± SEM) and eosinophilia. Effects were observed from 30 min to 48 h after treatment and were comparable to those achieved with three inhaled doses of ipratropium plus albuterol used as the positive control. N6022 increased BALF nitrite and plasma cGMP, while restoring BALF and plasma inflammatory markers toward baseline values. N6022 treatment also attenuated the OVA-induced increase in NFκB activation. In rat tracheal rings, N6022 decreased contractile responses to MCh. CONCLUSIONS: The significant bronchodilatory and anti-inflammatory actions of N6022 in the airways are consistent with restoration of GSNO levels through GSNOR inhibition. GSNOR inhibition may offer a therapeutic approach for the treatment of asthma and other inflammatory lung diseases. N6022 is currently being evaluated in clinical trials for the treatment of inflammatory lung disease.


Subject(s)
Aldehyde Oxidoreductases/antagonists & inhibitors , Asthma/drug therapy , Benzamides/pharmacology , Benzamides/therapeutic use , Bronchoconstriction/drug effects , Inflammation/prevention & control , Pyrroles/pharmacology , Pyrroles/therapeutic use , Animals , Asthma/immunology , Asthma/physiopathology , Female , Mice , Mice, Inbred BALB C
2.
Bioorg Med Chem Lett ; 22(6): 2338-42, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22342142

ABSTRACT

The enzyme S-nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, gastrointestinal, and cardiovascular systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently in clinical development for acute asthma. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogs of N6022 focusing on carboxamide modifications on the pendant N-phenyl moiety. We have identified potent and novel GSNOR inhibitors that demonstrate efficacy in an ovalbumin (OVA) induced asthma model in mice.


Subject(s)
Aldehyde Oxidoreductases/antagonists & inhibitors , Anti-Asthmatic Agents/chemical synthesis , Asthma/drug therapy , Benzamides/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Pyrroles/chemical synthesis , Acute Disease , Aldehyde Oxidoreductases/metabolism , Animals , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/therapeutic use , Asthma/chemically induced , Asthma/enzymology , Benzamides/administration & dosage , Benzamides/therapeutic use , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/therapeutic use , Humans , Male , Mice , Ovalbumin , Pyrroles/administration & dosage , Pyrroles/therapeutic use , S-Nitrosoglutathione/metabolism , S-Nitrosothiols/metabolism , Structure-Activity Relationship
3.
Biochemistry ; 51(10): 2157-68, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22335564

ABSTRACT

N6022 is a novel, first-in-class drug with potent inhibitory activity against S-nitrosoglutathione reductase (GSNOR), an enzyme important in the metabolism of S-nitrosoglutathione (GSNO) and in the maintenance of nitric oxide (NO) homeostasis. Inhibition of GSNOR by N6022 and related compounds has shown safety and efficacy in animal models of asthma, chronic obstructive pulmonary disease, and inflammatory bowel disease [Sun, X., et al. (2011) ACS Med. Chem. Lett. 2, 402-406]. N6022 is currently in early phase clinical studies in humans. We show here that N6022 is a tight-binding, specific, and fully reversible inhibitor of GSNOR with an IC(50) of 8 nM and a K(i) of 2.5 nM. We accounted for the fact that the NAD(+)- and NADH-dependent oxidation and reduction reactions, catalyzed by GSNOR are bisubstrate in nature in our calculations. N6022 binds in the GSNO substrate binding pocket like a competitive inhibitor, although in kinetic assays it behaves with a mixed uncompetitive mode of inhibition (MOI) toward the GSNO substrate and a mixed competitive MOI toward the formaldehyde adduct, S-hydroxymethylglutathione (HMGSH). N6022 is uncompetitive with cofactors NAD(+) and NADH. The potency, specificity, and MOI of related GSNOR inhibitor compounds are also reported.


Subject(s)
Aldehyde Oxidoreductases/antagonists & inhibitors , Benzamides/pharmacology , Pyrroles/pharmacology , Alcohol Oxidoreductases/antagonists & inhibitors , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/metabolism , Binding, Competitive , Catalytic Domain , Enzyme Inhibitors/pharmacology , Humans , In Vitro Techniques , Kinetics , Models, Biological , Models, Molecular , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , S-Nitrosoglutathione/metabolism
4.
PLoS One ; 7(12): e52995, 2012.
Article in English | MEDLINE | ID: mdl-23285246

ABSTRACT

Endogenous S-nitrosothiols, including S-nitrosoglutathione (GSNO), mediate nitric oxide (NO)-based signaling, inflammatory responses, and smooth muscle function. Reduced GSNO levels have been implicated in several respiratory diseases, and inhibition of GSNO reductase, (GSNOR) the primary enzyme that metabolizes GSNO, represents a novel approach to treating inflammatory lung diseases. Recently, an association between decreased GSNOR expression and human lung cancer risk was proposed in part based on immunohistochemical staining using a polyclonal GSNOR antibody. GSNOR is an isozyme of the alcohol dehydrogenase (ADH) family, and we demonstrate that the antibody used in those studies cross reacts substantially with other ADH proteins and may not be an appropriate reagent. We evaluated human lung cancer tissue arrays using monoclonal antibodies highly specific for human GSNOR with minimal cross reactivity to other ADH proteins. We verified the presence of GSNOR in ≥85% of specimens examined, and extensive analysis of these samples demonstrated no difference in GSNOR protein expression between cancerous and normal lung tissues. Additionally, GSNOR and other ADH mRNA levels were evaluated quantitatively in lung cancer cDNA arrays by qPCR. Consistent with our immunohistochemical findings, GSNOR mRNA levels were not changed in lung cancer tissues, however the expression levels of other ADH genes were decreased. ADH IB mRNA levels were reduced (>10-fold) in 65% of the lung cancer cDNA specimens. We conclude that the previously reported results showed an incorrect association of GSNOR and human lung cancer risk, and a decrease in ADH IB, rather than GSNOR, correlates with human lung cancer.


Subject(s)
Alcohol Dehydrogenase/genetics , Lung Neoplasms/genetics , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Alcohol Dehydrogenase/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Antibodies, Monoclonal/metabolism , Case-Control Studies , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Lung Neoplasms/metabolism , RNA, Messenger/analysis , S-Nitrosoglutathione/metabolism
5.
Bioorg Med Chem Lett ; 21(19): 5849-53, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21855338

ABSTRACT

The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious S-nitrosoglutathione reductase (GSNOR) inhibitor and is currently undergoing clinical development for the treatment of acute asthma. GSNOR is a member of the alcohol dehydrogenase family (ADH) and regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). Reduced levels of GSNO, as well as other nitrosothiols (SNOs), have been implicated in the pathogenesis of many diseases including those of the respiratory, cardiovascular, and gastrointestinal systems. Preservation of endogenous SNOs through GSNOR inhibition presents a novel therapeutic approach with broad applicability. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogues of N6022 focusing on removal of cytochrome P450 inhibition activities. We identified potent and novel GSNOR inhibitors having reduced CYP inhibition activities and demonstrated efficacy in a mouse ovalbumin (OVA) model of asthma.


Subject(s)
Aldehyde Oxidoreductases/antagonists & inhibitors , Benzamides/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Pyrroles/pharmacology , Animals , Asthma/drug therapy , Asthma/enzymology , Benzamides/chemistry , Benzamides/toxicity , Cytochrome P-450 Enzyme Inhibitors , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Design , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Humans , Imidazoles/pharmacokinetics , Imidazoles/toxicity , Lung/pathology , Lung/physiopathology , Mice , Molecular Structure , Molecular Targeted Therapy , No-Observed-Adverse-Effect Level , Pyrroles/chemistry , Pyrroles/toxicity , Receptors, Opioid, delta/metabolism , S-Nitrosoglutathione/metabolism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 21(12): 3671-5, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21570838

ABSTRACT

S-Nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, cardiovascular, and gastrointestinal systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently undergoing clinical development. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogues of N6022 focusing on scaffold modification and propionic acid replacement. We identified equally potent and novel GSNOR inhibitors having pyrrole regioisomers as scaffolds using a structure based approach.


Subject(s)
Aldehyde Oxidoreductases/antagonists & inhibitors , Benzamides/chemistry , Benzamides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Propionates/chemistry , Propionates/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Benzamides/chemical synthesis , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Inhibitory Concentration 50 , Molecular Structure , Propionates/chemical synthesis , Pyrroles/chemical synthesis , Stereoisomerism , Structure-Activity Relationship
7.
ACS Med Chem Lett ; 2(5): 402-6, 2011 May 12.
Article in English | MEDLINE | ID: mdl-24900320

ABSTRACT

S-Nitrosoglutathione reductase (GSNOR) regulates S-nitrosothiols (SNOs) and nitric oxide (NO) in vivo through catabolism of S-nitrosoglutathione (GSNO). GSNOR and the anti-inflammatory and smooth muscle relaxant activities of SNOs, GSNO, and NO play significant roles in pulmonary, cardiovascular, and gastrointestinal function. In GSNOR knockout mice, basal airway tone is reduced and the response to challenge with bronchoconstrictors or airway allergens is attenuated. Consequently, GSNOR has emerged as an attractive therapeutic target for several clinically important human diseases. As such, small molecule inhibitors of GSNOR were developed. These GSNOR inhibitors were potent, selective, and efficacious in animal models of inflammatory disease characterized by reduced levels of GSNO and bioavailable NO. N6022, a potent and reversible GSNOR inhibitor, reduced bronchoconstriction and pulmonary inflammation in a mouse model of asthma and demonstrated an acceptable safety profile. N6022 is currently in clinical development as a potential agent for the treatment of acute asthma.

SELECTION OF CITATIONS
SEARCH DETAIL
...