Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4178, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853870

ABSTRACT

Human cerebral cancers are known to contain cell types resembling the varying stages of neural development. However, the basis of this association remains unclear. Here, we map the development of mouse cerebrum across the developmental time-course, from embryonic day 12.5 to postnatal day 365, performing single-cell transcriptomics on >100,000 cells. By comparing this reference atlas to single-cell data from >100 glial tumours of the adult and paediatric human cerebrum, we find that tumour cells have an expression signature that overlaps with temporally restricted, embryonic radial glial precursors (RGPs) and their immediate sublineages. Further, we demonstrate that prenatal transformation of RGPs in a genetic mouse model gives rise to adult cerebral tumours that show an embryonic/juvenile RGP identity. Together, these findings implicate the acquisition of embryonic-like states in the genesis of adult glioma, providing insight into the origins of human glioma, and identifying specific developmental cell types for therapeutic targeting.


Subject(s)
Cerebrum , Glioma , Animals , Brain , Child , Glioma/genetics , Humans , Mice , Neurogenesis , Telencephalon
2.
Nat Commun ; 12(1): 6322, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732728

ABSTRACT

Molecular programs that underlie precursor progression in multiple myeloma are incompletely understood. Here, we report a disease spectrum-spanning, single-cell analysis of the Vκ*MYC myeloma mouse model. Using samples obtained from mice with serologically undetectable disease, we identify malignant cells as early as 30 weeks of age and show that these tumours contain subclonal copy number variations that persist throughout progression. We detect intratumoural heterogeneity driven by transcriptional variability during active disease and show that subclonal expression programs are enriched at different times throughout early disease. We then show how one subclonal program related to GCN2 stress response is progressively activated during progression in myeloma patients. Finally, we use chemical and genetic perturbation of GCN2 in vitro to support this pathway as a therapeutic target in myeloma. These findings therefore present a model of precursor progression in Vκ*MYC mice, nominate an adaptive mechanism important for myeloma survival, and highlight the need for single-cell analyses to understand the biological underpinnings of disease progression.


Subject(s)
Disease Progression , Multiple Myeloma/genetics , Single-Cell Analysis/methods , Animals , DNA Copy Number Variations , Disease Models, Animal , Genetic Heterogeneity , Humans , Mice , Mice, Inbred C57BL , Multiple Myeloma/metabolism , Protein Serine-Threonine Kinases/genetics
3.
Cell Rep ; 34(13): 108903, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33789112

ABSTRACT

Across the animal kingdom, adult tissue homeostasis is regulated by adult stem cell activity, which is commonly dysregulated in human cancers. However, identifying key regulators of stem cells in the milieu of thousands of genes dysregulated in a given cancer is challenging. Here, using a comparative genomics approach between planarian adult stem cells and patient-derived glioblastoma stem cells (GSCs), we identify and demonstrate the role of DEAD-box helicase DDX56 in regulating aspects of stemness in four stem cell systems: planarians, mouse neural stem cells, human GSCs, and a fly model of glioblastoma. In a human GSC line, DDX56 localizes to the nucleolus, and using planarians, when DDX56 is lost, stem cells dysregulate expression of ribosomal RNAs and lose nucleolar integrity prior to stem cell death. Together, a comparative genomic approach can be used to uncover conserved stemness regulators that are functional in both normal and cancer stem cells.


Subject(s)
DEAD-box RNA Helicases/metabolism , Neoplastic Stem Cells/metabolism , Adult Stem Cells/metabolism , Animals , Cell Line, Tumor , Cell Lineage , Cell Nucleolus/metabolism , Cell Proliferation , Cell Self Renewal , Cell Survival , Cerebral Cortex/cytology , DEAD-box RNA Helicases/genetics , Drosophila/metabolism , Drosophila Proteins/metabolism , Gene Expression Regulation, Neoplastic , Genomics , Glioblastoma/genetics , Glioblastoma/pathology , HEK293 Cells , Humans , Mice , Models, Biological , Neoplastic Stem Cells/pathology , Neural Stem Cells/metabolism , Planarians/cytology , Planarians/metabolism , RNA Interference , Ribosome Subunits/metabolism , Treatment Outcome , Up-Regulation/genetics
4.
Nat Commun ; 12(1): 979, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579912

ABSTRACT

Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Animals , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Cycle , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Epigenomics , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Neoplastic Stem Cells/metabolism , Protein-Arginine N-Methyltransferases/drug effects , Protein-Arginine N-Methyltransferases/genetics , RNA Splicing , Xenograft Model Antitumor Assays
5.
Nat Cancer ; 2(2): 157-173, 2021 02.
Article in English | MEDLINE | ID: mdl-35122077

ABSTRACT

Glioblastomas harbor diverse cell populations, including rare glioblastoma stem cells (GSCs) that drive tumorigenesis. To characterize functional diversity within this population, we performed single-cell RNA sequencing on >69,000 GSCs cultured from the tumors of 26 patients. We observed a high degree of inter- and intra-GSC transcriptional heterogeneity that could not be fully explained by DNA somatic alterations. Instead, we found that GSCs mapped along a transcriptional gradient spanning two cellular states reminiscent of normal neural development and inflammatory wound response. Genome-wide CRISPR-Cas9 dropout screens independently recapitulated this observation, with each state characterized by unique essential genes. Further single-cell RNA sequencing of >56,000 malignant cells from primary tumors found that the majority organize along an orthogonal astrocyte maturation gradient yet retain expression of founder GSC transcriptional programs. We propose that glioblastomas grow out of a fundamental GSC-based neural wound response transcriptional program, which is a promising target for new therapy development.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/genetics , Carcinogenesis/genetics , Glioblastoma/genetics , Humans , Neoplastic Stem Cells/metabolism
6.
Cancer Res ; 80(24): 5478-5490, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33106333

ABSTRACT

Cancer cells can metabolize glutamine to replenish TCA cycle intermediates, leading to a dependence on glutaminolysis for cell survival. However, a mechanistic understanding of the role that glutamine metabolism has on the survival of glioblastoma (GBM) brain tumor stem cells (BTSC) has not yet been elucidated. Here, we report that across a panel of 19 GBM BTSC lines, inhibition of glutaminase (GLS) showed a variable response from complete blockade of cell growth to absolute resistance. Surprisingly, BTSC sensitivity to GLS inhibition was a result of reduced intracellular glutamate triggering the amino acid deprivation response (AADR) and not due to the contribution of glutaminolysis to the TCA cycle. Moreover, BTSC sensitivity to GLS inhibition negatively correlated with expression of the astrocytic glutamate transporters EAAT1 and EAAT2. Blocking glutamate transport in BTSCs with high EAAT1/EAAT2 expression rendered cells susceptible to GLS inhibition, triggering the AADR and limiting cell growth. These findings uncover a unique metabolic vulnerability in BTSCs and support the therapeutic targeting of upstream activators and downstream effectors of the AADR pathway in GBM. Moreover, they demonstrate that gene expression patterns reflecting the cellular hierarchy of the tissue of origin can alter the metabolic requirements of the cancer stem cell population. SIGNIFICANCE: Glioblastoma brain tumor stem cells with low astrocytic glutamate transporter expression are dependent on GLS to maintain intracellular glutamate to prevent the amino acid deprivation response and cell death.


Subject(s)
Amino Acids/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glutaminase/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction/drug effects , Astrocytes/metabolism , Benzeneacetamides/pharmacology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Citric Acid Cycle/drug effects , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glioblastoma/pathology , Glutamic Acid/metabolism , Glutaminase/antagonists & inhibitors , Humans , Thiadiazoles/pharmacology
7.
Nucleic Acids Res ; 48(W1): W372-W379, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32479601

ABSTRACT

CReSCENT: CanceR Single Cell ExpressioN Toolkit (https://crescent.cloud), is an intuitive and scalable web portal incorporating a containerized pipeline execution engine for standardized analysis of single-cell RNA sequencing (scRNA-seq) data. While scRNA-seq data for tumour specimens are readily generated, subsequent analysis requires high-performance computing infrastructure and user expertise to build analysis pipelines and tailor interpretation for cancer biology. CReSCENT uses public data sets and preconfigured pipelines that are accessible to computational biology non-experts and are user-editable to allow optimization, comparison, and reanalysis for specific experiments. Users can also upload their own scRNA-seq data for analysis and results can be kept private or shared with other users.


Subject(s)
Neoplasms/genetics , RNA-Seq/methods , Single-Cell Analysis/methods , Software , Humans , Neoplasms/immunology , T-Lymphocytes/metabolism
8.
Nature ; 549(7671): 227-232, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28854171

ABSTRACT

Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Tracking , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Proliferation , Clone Cells/drug effects , Clone Cells/pathology , Epigenesis, Genetic , Female , Glioblastoma/drug therapy , Heterografts , Humans , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Phenotype , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...