Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Discov ; 25(4): 384-396, 2020 04.
Article in English | MEDLINE | ID: mdl-31701793

ABSTRACT

Although the potential value of RNA as a target for new small molecule therapeutics is becoming increasingly credible, the physicochemical properties required for small molecules to selectively bind to RNA remain relatively unexplored. To investigate the druggability of RNAs with small molecules, we have employed affinity mass spectrometry, using the Automated Ligand Identification System (ALIS), to screen 42 RNAs from a variety of RNA classes, each against an array of chemically diverse drug-like small molecules (~50,000 compounds) and functionally annotated tool compounds (~5100 compounds). The set of RNA-small molecule interactions that was generated was compared with that for protein-small molecule interactions, and naïve Bayesian models were constructed to determine the types of specific chemical properties that bias small molecules toward binding to RNA. This set of RNA-selective chemical features was then used to build an RNA-focused set of ~3800 small molecules that demonstrated increased propensity toward binding the RNA target set. In addition, the data provide an overview of the specific physicochemical properties that help to enable binding to potential RNA targets. This work has increased the understanding of the chemical properties that are involved in small molecule binding to RNA, and the methodology used here is generally applicable to RNA-focused drug discovery efforts.


Subject(s)
Drug Discovery , Molecular Targeted Therapy , RNA/drug effects , Small Molecule Libraries/pharmacology , Humans , Ligands , Mass Spectrometry , Pharmaceutical Preparations , RNA/genetics , Small Molecule Libraries/chemistry
2.
Nature ; 557(7704): 228-232, 2018 05.
Article in English | MEDLINE | ID: mdl-29686415

ABSTRACT

Most drugs are developed through iterative rounds of chemical synthesis and biochemical testing to optimize the affinity of a particular compound for a protein target of therapeutic interest. This process is challenging because candidate molecules must be selected from a chemical space of more than 1060 drug-like possibilities 1 , and a single reaction used to synthesize each molecule has more than 107 plausible permutations of catalysts, ligands, additives and other parameters 2 . The merger of a method for high-throughput chemical synthesis with a biochemical assay would facilitate the exploration of this enormous search space and streamline the hunt for new drugs and chemical probes. Miniaturized high-throughput chemical synthesis3-7 has enabled rapid evaluation of reaction space, but so far the merger of such syntheses with bioassays has been achieved with only low-density reaction arrays, which analyse only a handful of analogues prepared under a single reaction condition8-13. High-density chemical synthesis approaches that have been coupled to bioassays, including on-bead 14 , on-surface 15 , on-DNA 16 and mass-encoding technologies 17 , greatly reduce material requirements, but they require the covalent linkage of substrates to a potentially reactive support, must be performed under high dilution and must operate in a mixture format. These reaction attributes limit the application of transition-metal catalysts, which are easily poisoned by the many functional groups present in a complex mixture, and of transformations for which the kinetics require a high concentration of reactant. Here we couple high-throughput nanomole-scale synthesis with a label-free affinity-selection mass spectrometry bioassay. Each reaction is performed at a 0.1-molar concentration in a discrete well to enable transition-metal catalysis while consuming less than 0.05 milligrams of substrate per reaction. The affinity-selection mass spectrometry bioassay is then used to rank the affinity of the reaction products to target proteins, removing the need for time-intensive reaction purification. This method enables the primary synthesis and testing steps that are critical to the invention of protein inhibitors to be performed rapidly and with minimal consumption of starting materials.


Subject(s)
Nanotechnology/methods , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Proteins/chemistry , Biological Assay , Catalysis , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/chemistry , Drug Evaluation, Preclinical , Kinetics , Ligands , Mass Spectrometry , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Proteins/antagonists & inhibitors , Substrate Specificity
3.
ACS Chem Biol ; 13(3): 820-831, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29412640

ABSTRACT

Recent advances in understanding the relevance of noncoding RNA (ncRNA) to disease have increased interest in drugging ncRNA with small molecules. The recent discovery of ribocil, a structurally distinct synthetic mimic of the natural ligand of the flavin mononucleotide (FMN) riboswitch, has revealed the potential chemical diversity of small molecules that target ncRNA. Affinity-selection mass spectrometry (AS-MS) is theoretically applicable to high-throughput screening (HTS) of small molecules binding to ncRNA. Here, we report the first application of the Automated Ligand Detection System (ALIS), an indirect AS-MS technique, for the selective detection of small molecule-ncRNA interactions, high-throughput screening against large unbiased small-molecule libraries, and identification and characterization of novel compounds (structurally distinct from both FMN and ribocil) that target the FMN riboswitch. Crystal structures reveal that different compounds induce various conformations of the FMN riboswitch, leading to different activity profiles. Our findings validate the ALIS platform for HTS screening for RNA-binding small molecules and further demonstrate that ncRNA can be broadly targeted by chemically diverse yet selective small molecules as therapeutics.


Subject(s)
Drug Discovery , Mass Spectrometry/methods , RNA/metabolism , Small Molecule Libraries , Crystallography, X-Ray , Flavin Mononucleotide/metabolism , Ligands , Molecular Structure , Pyrimidines/metabolism , Pyrimidines/pharmacology , Riboswitch
4.
J Biomol Screen ; 21(6): 608-19, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26969322

ABSTRACT

The primary objective of early drug discovery is to associate druggable target space with a desired phenotype. The inability to efficiently associate these often leads to failure early in the drug discovery process. In this proof-of-concept study, the most tractable starting points for drug discovery within the NF-κB pathway model system were identified by integrating affinity selection-mass spectrometry (AS-MS) with functional cellular assays. The AS-MS platform Automated Ligand Identification System (ALIS) was used to rapidly screen 15 NF-κB proteins in parallel against large-compound libraries. ALIS identified 382 target-selective compounds binding to 14 of the 15 proteins. Without any chemical optimization, 22 of the 382 target-selective compounds exhibited a cellular phenotype consistent with the respective target associated in ALIS. Further studies on structurally related compounds distinguished two chemical series that exhibited a preliminary structure-activity relationship and confirmed target-driven cellular activity to NF-κB1/p105 and TRAF5, respectively. These two series represent new drug discovery opportunities for chemical optimization. The results described herein demonstrate the power of combining ALIS with cell functional assays in a high-throughput, target-based approach to determine the most tractable drug discovery opportunities within a pathway.


Subject(s)
Drug Discovery , High-Throughput Screening Assays/methods , NF-kappa B/antagonists & inhibitors , Structure-Activity Relationship , Ligands , Mass Spectrometry/methods , NF-kappa B/chemistry , Protein Binding , Signal Transduction/drug effects , TNF Receptor-Associated Factor 5/antagonists & inhibitors , TNF Receptor-Associated Factor 5/chemistry , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/chemistry
5.
J Comb Chem ; 7(1): 96-8, 2005.
Article in English | MEDLINE | ID: mdl-15638487

ABSTRACT

A solid-phase synthesis of trisubstituted 1H-pyrido[2,3-d]pyrimidin-4-ones has been developed. The synthesis utilizes solid-phase bound N-2,6-dichloronicotinoyl-1H-benzotriazole-1-carboximidamides as key intermediates. Sequential substitution of benzotriazole and the two chlorines furnishes the title compounds with regioselectivity and high purity. Application of the method to various disubstituted analogues is also demonstrated.


Subject(s)
Combinatorial Chemistry Techniques , Pyrimidinones/chemistry , Pyrimidinones/chemical synthesis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...