Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 20(5): e3001616, 2022 05.
Article in English | MEDLINE | ID: mdl-35507548

ABSTRACT

Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite's susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite's susceptibility to lumefantrine and mefloquine-a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite's digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine's access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Chloroquine/metabolism , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance/genetics , Drug Resistance, Multiple , Lumefantrine/pharmacology , Lumefantrine/therapeutic use , Malaria, Falciparum/parasitology , Mefloquine/metabolism , Mefloquine/pharmacology , Mefloquine/therapeutic use , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/therapeutic use , Parasites/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protein Isoforms/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
2.
Nat Commun ; 11(1): 3922, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764664

ABSTRACT

The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key contributor to multidrug resistance and is also essential for the survival of the malaria parasite, yet its natural function remains unresolved. We identify host-derived peptides of 4-11 residues, varying in both charge and composition, as the substrates of PfCRT in vitro and in situ, and show that PfCRT does not mediate the non-specific transport of other metabolites and/or ions. We find that drug-resistance-conferring mutations reduce both the peptide transport capacity and substrate range of PfCRT, explaining the impaired fitness of drug-resistant parasites. Our results indicate that PfCRT transports peptides from the lumen of the parasite's digestive vacuole to the cytosol, thereby providing a source of amino acids for parasite metabolism and preventing osmotic stress of this organelle. The resolution of PfCRT's native substrates will aid the development of drugs that target PfCRT and/or restore the efficacy of existing antimalarials.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Membrane Transport Proteins/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Biological Transport, Active , Drug Resistance/genetics , Female , Host-Parasite Interactions/genetics , Host-Parasite Interactions/physiology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Models, Biological , Mutant Proteins/genetics , Mutant Proteins/metabolism , Oligopeptides/metabolism , Oocytes/metabolism , Plasmodium falciparum/genetics , Protein Transport , Protozoan Proteins/genetics , Xenopus laevis
3.
Front Physiol ; 10: 1375, 2019.
Article in English | MEDLINE | ID: mdl-31736791

ABSTRACT

Dopamine is an important neuromodulator involved in reward-processing, movement control, motivational responses, and other aspects of behavior in most animals. In honey bees (Apis mellifera), the dopaminergic system has been implicated in an elaborate pheromonal communication network between individuals and in the differentiation of females into reproductive (queen) and sterile (worker) castes. Here we have identified and characterized a honey bee dopamine transporter (AmDAT) and a splice variant lacking exon 3 (AmDATΔex3). Both transcripts are present in the adult brain and antennae as well as at lower levels within larvae and ovaries. When expressed separately in the Xenopus oocyte system, AmDAT localizes to the oocyte surface whereas the splice variant is retained at an internal membrane. Oocytes expressing AmDAT exhibit a 12-fold increase in the uptake of [3H]dopamine relative to non-injected oocytes, whereas the AmDATΔex3-expressing oocytes show no change in [3H]dopamine transport. Electrophysiological measurements of AmDAT activity revealed it to be a high-affinity, low-capacity transporter of dopamine. The transporter also recognizes noradrenaline as a major substrate and tyramine as a minor substrate, but does not transport octopamine, L-Dopa, or serotonin. Dopamine transport via AmDAT is inhibited by cocaine in a reversible manner, but is unaffected by octopamine. Co-expression of AmDAT and AmDATΔex3 in oocytes results in a substantial reduction in AmDAT-mediated transport, which was also detected as a significant decrease in the level of AmDAT protein. This down-regulatory effect is not attributable to competition with AmDATΔex3 for ER ribosomes, nor to a general inhibition of the oocyte's translational machinery. In vivo, the expression of both transcripts shows a high level of inter-individual variability. Gene-focused, ultra-deep amplicon sequencing detected methylation of the amdat locus at ten 5'-C-phosphate-G-3' dinucleotides (CpGs), but only in 5-10% of all reads in whole brains or antennae. These observations, together with the localization of the amdat transcript to a few clusters of dopaminergic neurons, imply that amdat methylation is positively linked to its transcription. Our findings suggest that multiple cellular mechanisms, including gene splicing and epigenomic communication systems, may be adopted to increase the potential of a conserved gene to contribute to lineage-specific behavioral outcomes.

4.
Curr Opin Pharmacol ; 42: 71-80, 2018 10.
Article in English | MEDLINE | ID: mdl-30142480

ABSTRACT

The deployment of artemisinin-based combination therapies (ACTs) has been, and continues to be, integral to reducing the number of malaria cases and deaths. However, their efficacy is being increasingly jeopardized by the emergence and spread of parasites that are resistant (or partially resistant) to the artemisinin derivatives and to their partner drugs, with the efficacy of the latter being especially crucial for treatment success. A detailed understanding of the genetic determinants of resistance to the ACT partner drugs, and the mechanisms by which they mediate resistance, is required for the surveillance of molecular markers and to optimize the efficacy and lifespan of the partner drugs through resistance management strategies. We summarize new insights into the molecular basis of parasite resistance to the ACTs, such as recently-uncovered determinants of parasite susceptibility to the artemisinin derivatives, piperaquine, lumefantrine, and mefloquine, and outline the mechanisms through which polymorphisms in these determinants may be conferring resistance.


Subject(s)
Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance/drug effects , Malaria/drug therapy , Parasites/drug effects , Animals , Humans
5.
PLoS Pathog ; 12(7): e1005725, 2016 07.
Article in English | MEDLINE | ID: mdl-27441371

ABSTRACT

Mutations in the Plasmodium falciparum 'chloroquine resistance transporter' (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite's digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite's hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite's survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite's hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite's sensitivity to this antimalarial. These insights provide a foundation for understanding clinically-relevant observations of inverse drug susceptibilities in the malaria parasite.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/physiology , Malaria, Falciparum , Membrane Transport Proteins/metabolism , Plasmodium falciparum/drug effects , Protozoan Proteins/metabolism , Amantadine/metabolism , Amantadine/pharmacology , Animals , Antimalarials/metabolism , Biological Transport/physiology , Blotting, Western , Chloroquine/metabolism , Chloroquine/pharmacology , Fluorescent Antibody Technique , Humans , Mutagenesis, Site-Directed , Protein Isoforms/metabolism , Quinine/metabolism , Quinine/pharmacology , Xenopus laevis
6.
Nat Commun ; 6: 6253, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25697406

ABSTRACT

Roquin is an RNA-binding protein that prevents autoimmunity and inflammation via repression of bound target mRNAs such as inducible costimulator (Icos). When Roquin is absent or mutated (Roquin(san)), Icos is overexpressed in T cells. Here we show that Roquin enhances Dicer-mediated processing of pre-miR-146a. Roquin also directly binds Argonaute2, a central component of the RNA-induced silencing complex, and miR-146a, a microRNA that targets Icos mRNA. In the absence of functional Roquin, miR-146a accumulates in T cells. Its accumulation is not due to increased transcription or processing, rather due to enhanced stability of mature miR-146a. This is associated with decreased 3' end uridylation of the miRNA. Crystallographic studies reveal that Roquin contains a unique HEPN domain and identify the structural basis of the 'san' mutation and Roquin's ability to bind multiple RNAs. Roquin emerges as a protein that can bind Ago2, miRNAs and target mRNAs, to control homeostasis of both RNA species.


Subject(s)
Argonaute Proteins/metabolism , Homeostasis , MicroRNAs/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Crystallography, X-Ray , HEK293 Cells , Half-Life , Humans , Mice, Inbred C57BL , MicroRNAs/genetics , Protein Binding/genetics , Protein Structure, Tertiary , RNA Processing, Post-Transcriptional , RNA Stability , Ribonuclease III/metabolism , T-Lymphocytes/metabolism , Ubiquitin-Protein Ligases/chemistry
7.
Proc Natl Acad Sci U S A ; 111(17): E1759-67, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24728833

ABSTRACT

Mutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have given rise to CQ resistance in different parts of the world. Here we present a detailed molecular analysis of the number of mutations (and the order of addition) required to confer CQ transport activity upon the PfCRT as well as a kinetic characterization of diverse forms of PfCRT. We measured the ability of more than 100 variants of PfCRT to transport CQ when expressed at the surface of Xenopus laevis oocytes. Multiple mutational pathways led to saturable CQ transport via PfCRT, but these could be separated into two main lineages. Moreover, the attainment of full activity followed a rigid process in which mutations had to be added in a specific order to avoid reductions in CQ transport activity. A minimum of two mutations sufficed for (low) CQ transport activity, and as few as four conferred full activity. The finding that diverse PfCRT variants are all limited in their capacity to transport CQ suggests that resistance could be overcome by reoptimizing the CQ dosage.


Subject(s)
Chloroquine/metabolism , Drug Resistance , Malaria, Falciparum/metabolism , Membrane Transport Proteins/genetics , Mutation/genetics , Parasites/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Amino Acid Sequence , Animals , Biological Transport , Haplotypes , Kinetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oocytes , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Recombinant Proteins/metabolism , Structure-Activity Relationship , Transfection , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...