Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(4): e11267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38638366

ABSTRACT

Demographic histories are frequently a product of the environment, as populations expand or contract in response to major environmental changes, often driven by changes in climate. Meso- and bathy-pelagic fishes inhabit some of the most temporally and spatially stable habitats on the planet. The stability of the deep-pelagic could make deep-pelagic fishes resistant to the demographic instability commonly reported in fish species inhabiting other marine habitats, however the demographic histories of deep-pelagic fishes are unknown. We reconstructed the historical demography of 11 species of deep-pelagic fishes using mitochondrial and nuclear DNA sequence data. We uncovered widespread evidence of population expansions in our study species, a counterintuitive result based on the nature of deep-pelagic ecosystems. Frequency-based methods detected potential demographic changes in nine species of fishes, while extended Bayesian skyline plots identified population expansions in four species. These results suggest that despite the relatively stable nature of the deep-pelagic environment, the fishes that reside here have likely been impacted by past changes in climate. Further investigation is necessary to better understand how deep-pelagic fishes, by far Earth's most abundant vertebrates, will respond to future climatic changes.

2.
PLoS One ; 18(2): e0281441, 2023.
Article in English | MEDLINE | ID: mdl-36780489

ABSTRACT

The practice of catch and release fishing is common among anglers but has been shown to cause unintended mortalities in some species. Current post-release mortality estimates used in coastal shark stock assessments are typically derived from boat-based shark fisheries, which differ from shore-based operations that expose sharks to potentially more stressful environmental and handling conditions. Recreational post-release mortality rates in shore-based fisheries must be quantified to improve stock assessment models and to create guidelines that protect species from overexploitation. Here, we partnered with experienced anglers acting as citizen scientists to deploy pop-up satellite archival transmitting tags (PSAT, n = 22) and acceleration data loggers (ADLs, n = 22). on four commonly caught sharks including the blacktip shark (Carcharhinus limbatus, n = 11), bull shark (Carcharhinus leucas, n = 14), tiger shark (Galeocerdo cuvier, n = 6), and great hammerheads (Sphyrna mokarran, n = 2). Mortality occurred within minutes to hours post-release. If evidence of mortality occurred after normal diving behavior had been re-established for 10 days, then the mortality was considered natural and not related to the catch-and-release process. Post-release mortality estimates ranged from 0% for bull and tiger sharks to 45.5% for blacktip sharks. Of the two great hammerheads, one died within 30 minutes post-release while the other exhibited mortality characteristics 14 days after release. Moribund blacktip sharks experienced on average 3.4-4.9°C warmer water compared with survivors. Recovery periods were estimated for survivors of each species and were highly variable, differing based on duration of tag deployment. High variability in responses to capture and release between species demonstrates the need for species-specific assessments of post-release mortality in shore-based recreational fisheries.


Subject(s)
Fisheries , Sharks , Animals , Texas , Seafood , Sharks/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...