Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Environ Microbiol ; 26(3): e16600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38482770

ABSTRACT

Microbial community structure and function were assessed in the organic and upper mineral soil across a ~4000-year dune-based chronosequence at Big Bay, New Zealand, where total P declined and the proportional contribution of organic soil in the profile increased with time. We hypothesized that the organic and mineral soils would show divergent community evolution over time with a greater dependency on the functionality of phosphatase genes in the organic soil layer as it developed. The structure of bacterial, fungal, and phosphatase-harbouring communities was examined in both horizons across 3 dunes using amplicon sequencing, network analysis, and qPCR. The soils showed a decline in pH and total phosphorus (P) over time with an increase in phosphatase activity. The organic horizon had a wider diversity of Class A (phoN/phoC) and phoD-harbouring communities and a more complex microbiome, with hub taxa that correlated with P. Bacterial diversity declined in both horizons over time, with enrichment of Planctomycetes and Acidobacteria. More complex fungal communities were evident in the youngest dune, transitioning to a dominance of Ascomycota in both soil horizons. Higher phosphatase activity in older dunes was driven by less diverse P-mineralizing communities, especially in the organic horizon.


Subject(s)
Microbiota , Soil , Soil/chemistry , Phosphorus/analysis , Rainforest , Bacteria/genetics , Microbiota/genetics , Minerals , Phosphoric Monoester Hydrolases/genetics , Soil Microbiology
2.
Ambio ; 51(3): 611-622, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34013441

ABSTRACT

Phosphorus (P) is an essential element to all living beings but also a finite resource. P-related problems center around broken P cycles from local to global scales. This paper presents outcomes from the 9th International Phosphorus Workshop (IPW9) held 2019 on how to move towards a sustainable P management. It is based on two sequential discussion rounds with all participants. Important progress was reported regarding the awareness of P as finite mineable resource, technologies to recycle P, and legislation towards a circular P economy. Yet, critical deficits were identified such as how to handle legacy P, how climate change may affect ecosystem P cycling, or working business models to up-scale existing recycling models. Workshop participants argued for more transdisciplinary networks to narrow a perceived science-practice/policy gap. While this gap may be smaller in reality as illustrated with a Swiss example, we formulate recommendations how to bridge this gap more effectively.


Subject(s)
Ecosystem , Phosphorus , Humans , Interdisciplinary Research , Recycling
3.
Plant Physiol ; 187(4): 2279-2295, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34618027

ABSTRACT

Certain soil microorganisms can improve plant growth, and practices that encourage their proliferation around the roots can boost production and reduce reliance on agrochemicals. The beneficial effects of the microbial inoculants currently used in agriculture are inconsistent or short-lived because their persistence in soil and on roots is often poor. A complementary approach could use root exudates to recruit beneficial microbes directly from the soil and encourage inoculant proliferation. However, it is unclear whether the release of common organic metabolites can alter the root microbiome in a consistent manner and if so, how those changes vary throughout the whole root system. In this study, we altered the expression of transporters from the ALUMINUM-ACTIVATED MALATE TRANSPORTER and the MULTIDRUG AND TOXIC COMPOUND EXTRUSION families in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) and tested how the subsequent release of their substrates (simple organic anions, including malate, citrate, and γ-amino butyric acid) from root apices affected the root microbiomes. We demonstrate that these exudate compounds, separately and in combination, significantly altered microbiome composition throughout the root system. However, the root type (seminal or nodal), position along the roots (apex or base), and soil type had a greater influence on microbiome structure than the exudates. These results reveal that the root microbiomes of important cereal species can be manipulated by altering the composition of root exudates, and support ongoing attempts to improve plant production by manipulating the root microbiome.


Subject(s)
Microbiota/physiology , Oryza/metabolism , Plant Exudates/metabolism , Plant Roots/microbiology , Rhizosphere , Soil Microbiology , Triticum/metabolism , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Soil/chemistry
4.
Physiol Plant ; 173(3): 1030-1047, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34263457

ABSTRACT

Differences in root morphology and acclimation to low-phosphorus (P) soil were examined among eight legume species from the Trifolium Section Tricocephalum to understand how these root attributes determine P acquisition. Ornithopus sativus was included as a highly P-efficient benchmark species. Plants were grown as microswards in pots with five rates of P supplied in a topsoil layer to mimic uneven P distribution within a field soil profile. Topsoil and subsoil roots were harvested separately to enable measurement of the nutrient-foraging responses. Critical P requirement (lowest P supply for maximum yield) varied over a threefold range, reflecting differences in root morphology and acclimation of nutrient-foraging roots to P stress. Among the species, there was a 3.2-fold range in root length density, a 1.7-fold range in specific root length, and a 2.1-fold range in root hair length. O. sativus had the lowest critical P requirement, displayed a high root length density, the highest specific root length, and the longest root hairs. Acquisition of P from P-deficient soil was facilitated by development of a large root hair cylinder (i.e. a large root-soil interface). This, in turn, was determined by the intrinsic root morphology attributes of each genotype, and the plasticity of its root morphology response to internal P stress. Root acclimation in low-P soil by all species was mostly associated with preferential allocation of mass to nutrient-foraging roots. Only O. sativus and four of the Trifolium species adjusted specific root length beneficially, and only O. sativus increased its root hair length in low-P soil.


Subject(s)
Phosphorus , Trifolium , Acclimatization , Plant Roots , Soil
5.
Funct Plant Biol ; 48(9): 871-888, 2021 08.
Article in English | MEDLINE | ID: mdl-33934748

ABSTRACT

There is increasing interest in understanding how the microbial communities on roots can be manipulated to improve plant productivity. Root systems are not homogeneous organs but are comprised of different root types of various ages and anatomies that perform different functions. Relatively little is known about how this variation influences the distribution and abundance of microorganisms on roots and in the rhizosphere. Such information is important for understanding how root-microbe interactions might affect root function and prevent diseases. This study tested specific hypotheses related to the spatial variation of bacterial and fungal communities on wheat (Triticum aestivum L.) and rice (Oryza sativa L.) roots grown in contrasting soils. We demonstrate that microbial communities differed significantly between soil type, between host species, between root types, and with position along the root axes. The magnitude of variation between different root types and along individual roots was comparable with the variation detected between different plant species. We discuss the general patterns that emerged in this variation and identify bacterial and fungal taxa that were consistently more abundant on specific regions of the root system. We argue that these patterns should be measured more routinely so that localised root-microbe interactions can be better linked with root system design, plant health and performance.


Subject(s)
Microbiota , Oryza , Plant Roots , Soil Microbiology , Triticum
6.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Article in English | MEDLINE | ID: mdl-33609120

ABSTRACT

The Haast chronosequence in New Zealand is an ∼6500-year dune formation series, characterized by rapid podzol development, phosphorus (P) depletion and a decline in aboveground biomass. We examined bacterial and fungal community composition within mineral soil fractions using amplicon-based high-throughput sequencing (Illumina MiSeq). We targeted bacterial non-specific acid (class A, phoN/phoC) and alkaline (phoD) phosphomonoesterase genes and quantified specific genes and transcripts using real-time PCR. Soil bacterial diversity was greatest after 4000 years of ecosystem development and associated with an increased richness of phylotypes and a significant decline in previously dominant taxa (Firmicutes and Proteobacteria). Soil fungal communities transitioned from predominantly Basidiomycota to Ascomycota along the chronosequence and were most diverse in 290- to 392-year-old soils, coinciding with maximum tree basal area and organic P accumulation. The Bacteria:Fungi ratio decreased amid a competitive and interconnected soil community as determined by network analysis. Overall, soil microbial communities were associated with soil changes and declining P throughout pedogenesis and ecosystem succession. We identified an increased dependence on organic P mineralization, as found by the profiled acid phosphatase genes, soil acid phosphatase activity and function inference from predicted metagenomes (PICRUSt2).


Subject(s)
Microbiota , Soil , New Zealand , Phosphorus/analysis , Soil Microbiology
7.
New Phytol ; 229(3): 1268-1277, 2021 02.
Article in English | MEDLINE | ID: mdl-32929739

ABSTRACT

Phosphate-solubilising microorganisms (PSM) are often reported to have positive effects on crop productivity through enhanced phosphorus (P) nutrition. Our aim was to evaluate the validity of this concept. Most studies that report 'positive effects' of PSM on plant growth have been conducted under controlled conditions, whereas field experiments more frequently fail to demonstrate a positive response. Many studies have indicated that the mechanisms seen in vitro do not translate into improved crop P nutrition in complex soil-plant systems. Furthermore, associated mechanisms are often not rigorously assessed. We suggest that PSM do not mobilise sufficient P to change the crops' nutritional environment under field conditions. The current concept, in which PSM solubilise P 'for the plant' should thus be revised. Although PSM have the capacity to solubilise P to meet their own needs, it is the turnover of the microbial biomass that subsequently provides P to plants over a longer time. Therefore, the existing concept of PSM function is unlikely to deliver a reliable strategy for increasing crop P nutrition. A further mechanistic understanding is needed to determine how P mobilisation by PSM as a component of the whole soil community can be manipulated to become more effective for plant P nutrition.


Subject(s)
Phosphates , Soil , Agriculture , Crops, Agricultural , Phosphorus , Soil Microbiology
8.
Ecol Evol ; 8(16): 8217-8230, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30250697

ABSTRACT

Ecotones between distinct ecosystems have been the focus of many studies as they offer valuable insights into key drivers of community structure and ecological processes that underpin function. While previous studies have examined a wide range of above-ground parameters in ecotones, soil microbial communities have received little attention. Here we investigated spatial patterns, composition, and co-occurrences of archaea, bacteria, and fungi, and their relationships with soil ecological processes across a woodland-grassland ecotone. Geostatistical kriging and network analysis revealed that the community structure and spatial patterns of soil microbiota varied considerably between three habitat components across the ecotone. Woodland samples had significantly higher diversity of archaea while the grassland samples had significantly higher diversity of bacteria. Microbial co-occurrences reflected differences in soil properties and ecological processes. While microbial networks were dominated by bacterial nodes, different ecological processes were linked to specific microbial guilds. For example, soil phosphorus and phosphatase activity formed the largest clusters in their respective networks, and two lignolytic enzymes formed joined clusters. Bacterial ammonia oxidizers were dominant over archaeal oxidizers and showed a significant association (p < 0.001) with potential nitrification (PNR), with the PNR subnetwork being dominated by Betaproteobacteria. The top ten keystone taxa comprised six bacterial and four fungal OTUs, with Random Forest Analysis revealing soil carbon and nitrogen as the determinants of the abundance of keystone taxa. Our results highlight the importance of assessing interkingdom associations in soil microbial networks. Overall, this study shows how ecotones can be used as a model to delineate microbial structural patterns and ecological processes across adjoining land-uses within a landscape.

9.
Physiol Plant ; 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29498417

ABSTRACT

Citrate and phytase root exudates contribute to improved phosphorus (P) acquisition efficiency in Nicotiana tabacum (tobacco) when both exudates are produced in a P deficient soil. To test the importance of root intermingling in the interaction of citrate and phytase exudates, Nicotiana tabacum plant-lines with constitutive expression of heterologous citrate (Cit) or fungal phytase (Phy) exudation traits were grown under two root treatments (roots separated or intermingled) and in two soils with contrasting soil P availability. Complementarity of plant mixtures varying in citrate efflux rate and mobility of the expressed phytase in soil was determined based on plant biomass and P accumulation. Soil P composition was evaluated using solution 31 P NMR spectroscopy. In the soil with limited available P, positive complementarity occurred in Cit+Phy mixtures with roots intermingled. Root separation eliminated positive interactions in mixtures expressing the less mobile phytase (Aspergillus niger PhyA) whereas positive complementarity persisted in mixtures that expressed the more mobile phytase (Peniophora lycii PhyA). Soils from Cit+Phy mixtures contained less inorganic P and more organic P compared to monocultures. Exudate-specific strategies for the acquisition of soil P were most effective in P-limited soil and depended on citrate efflux rate and the relative mobility of the expressed phytase in soil. Plant growth and soil P utilization in plant systems with complementary exudation strategies are expected to be greatest where exudates persist in soil and are expressed synchronously in space and time.

10.
FEMS Microbiol Ecol ; 94(5)2018 05 01.
Article in English | MEDLINE | ID: mdl-29579181

ABSTRACT

European earthworms have colonised many parts of Australia, although their impact on soil microbial communities remains largely uncharacterised. An experiment was conducted to contrast the responses to Aporrectodea trapezoides introduction between soils from sites with established (Talmo, 64 A. trapezoides m-2) and rare (Glenrock, 0.6 A. trapezoides m-2) A. trapezoides populations. Our hypothesis was that earthworm introduction would lead to similar changes in bacterial communities in both soils. The effects of earthworm introduction (earthworm activity and cadaver decomposition) did not lead to a convergence of bacterial community composition between the two soils. However, in both soils, the Firmicutes decreased in abundance and a common set of bacteria responded positively to earthworms. The increase in the abundance of Flavobacterium, Chitinophagaceae, Rhodocyclaceae and Sphingobacteriales were consistent with previous studies. Evidence for possible soil resistance to earthworms was observed, with lower earthworm survival in Glenrock microcosms coinciding with A. trapezoides rarity in this site, lower soil organic matter and clay content and differences in the diversity and abundance of potential earthworm mutualist bacteria. These results suggest that while the impacts of earthworms vary between different soils, the consistent response of some bacteria may aid in predicting the impacts of earthworms on soil ecosystems.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Oligochaeta/physiology , Soil Microbiology , Soil/parasitology , Animals , Australia , Bacteria/classification , Bacteria/genetics , Ecosystem , Oligochaeta/growth & development
11.
Plant Methods ; 14: 114, 2018.
Article in English | MEDLINE | ID: mdl-30598690

ABSTRACT

BACKGROUND: Plant roots release a variety of organic compounds into the soil which alter the physical, chemical and biological properties of the rhizosphere. Root exudates are technically challenging to measure in soil because roots are difficult to access and exudates can be bound by minerals or consumed by microorganisms. Exudates are easier to measure with hydroponically-grown plants but, even here, simple compounds such as sugars and organic acids can be rapidly assimilated by microorganisms. Sterile hydroponic systems avoid this shortcoming but it is very difficult to maintain sterility for long periods especially for larger crop species. As a consequence, studies often use small model species such as Arabidopsis to measure exudates or use seedlings of crop plants which only have immature roots systems. RESULTS: We developed a simple hydroponic system for cultivating large crop plants in sterile conditions for more than 30 days. Using this system wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) plants were grown in sterile conditions for 30 days by which time they had reached the six-leaf stage and developed mature root systems with seminal, nodal and lateral roots. To demonstrate the utility of this system we characterized the aluminium-activated exudation of malate from the major types of wheat roots for the first time. We found that all root types measured released malate but the amounts were two-fold greater from the seminal and nodal axile roots compared with the lateral roots. Additionally, we showed that this sterile growth system could be used to collect exudates from intact whole root systems of barley. CONCLUSIONS: We developed a simple hydroponic system that enables cereal plants to be grown in sterile conditions for longer periods than previously recorded. Using this system we measured, for the first time, the aluminium-activated efflux of malate from the major types of wheat roots. We showed the system can also be used for collecting exudates from intact root systems of 30-day-old barley plants. This hydroponic system can be modified for various purposes. Importantly it enables the study of exudates from crop species with mature root systems.

12.
Curr Opin Microbiol ; 37: 135-141, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28692866

ABSTRACT

Fungi and bacteria are major players in soil biogeochemical cycles, however, most studies linking soil processes to microbial function ignore the potential role of interactions between these groups. A small number of studies have used correlation network analyses to investigate fungal-bacterial co-occurrences in soil, and revealed differences, as well as overlaps, in the ecosystem roles of these groups. These results contradict the view that fungi and bacteria are two distinct functional groups which can be studied in isolation. A more comprehensive understanding of the interplay between soil properties, biogeochemical cycles and the interactions between fungi and bacteria will be an important step towards improving the prediction and management of soil ecosystem services.


Subject(s)
Bacteria/growth & development , Biota , Fungi/growth & development , Soil Microbiology , Bacteria/classification , Bacteria/metabolism , Fungi/classification , Fungi/metabolism , Statistics as Topic
13.
PLoS One ; 11(5): e0153698, 2016.
Article in English | MEDLINE | ID: mdl-27144282

ABSTRACT

Removing carbon dioxide (CO2) from the atmosphere and storing the carbon (C) in resistant soil organic matter (SOM) is a global priority to restore soil fertility and help mitigate climate change. Although it is widely assumed that retaining rather than removing or burning crop residues will increase SOM levels, many studies have failed to demonstrate this. We hypothesised that the microbial nature of resistant SOM provides a predictable nutrient stoichiometry (C:nitrogen, C:phosphorus and C:sulphur-C:N:P:S) to target using supplementary nutrients when incorporating C-rich crop residues into soil. An improvement in the humification efficiency of the soil microbiome as a whole, and thereby C-sequestration, was predicted. In a field study over 5 years, soil organic-C (SOC) stocks to 1.6 m soil depth were increased by 5.5 t C ha-1 where supplementary nutrients were applied with incorporated crop residues, but were reduced by 3.2 t C ha-1 without nutrient addition, with 2.9 t C ha-1 being lost from the 0-10 cm layer. A net difference of 8.7 t C ha-1 was thus achieved in a cropping soil over a 5 year period, despite the same level of C addition. Despite shallow incorporation (0.15 m), more than 50% of the SOC increase occurred below 0.3 m, and as predicted by the stoichiometry, increases in resistant SOC were accompanied by increases in soil NPS at all depths. Interestingly the C:N, C:P and C:S ratios decreased significantly with depth possibly as a consequence of differences in fungi to bacteria ratio. Our results demonstrate that irrespective of the C-input, it is essential to balance the nutrient stoichiometry of added C to better match that of resistant SOM to increase SOC sequestration. This has implications for global practices and policies aimed at increasing SOC sequestration and specifically highlight the need to consider the hidden cost and availability of associated nutrients in building soil-C.


Subject(s)
Carbon Dioxide/chemistry , Carbon Sequestration/physiology , Crops, Agricultural/chemistry , Soil/chemistry , Agriculture/methods , Carbon/chemistry , Climate Change , Fertilizers , Food , Nitrogen/chemistry , Phosphorus/chemistry
14.
Can J Microbiol ; 62(6): 485-91, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27045904

ABSTRACT

Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Nitrogen/metabolism , Soil/chemistry , Archaea/genetics , Arctic Regions , Oxidation-Reduction , Polymorphism, Restriction Fragment Length
15.
J Exp Bot ; 67(12): 3709-18, 2016 06.
Article in English | MEDLINE | ID: mdl-26873980

ABSTRACT

Rhizosheaths comprise soil bound to roots, and in wheat (Triticum aestivum L.) rhizosheath size correlates with root hair length. The aims of this study were to determine the effect that a large rhizosheath has on the phosphorus (P) acquisition by wheat and to investigate the genetic control of rhizosheath size in wheat grown on acid soil.Near-isogenic wheat lines differing in rhizosheath size were evaluated on two acid soils. The soils were fertilized with mineral nutrients and included treatments with either low or high P. The same soils were treated with CaCO3 to raise the pH and detoxify Al(3+) Genotypic differences in rhizosheath size were apparent only when soil pH was low and Al(3+) was present. On acid soils, a large rhizosheath increased shoot biomass compared with a small rhizosheath regardless of P supply. At low P supply, increased shoot biomass could be attributed to a greater uptake of soil P, but at high P supply the increased biomass was due to some other factor. Generation means analysis indicated that rhizosheath size on acid soil was controlled by multiple, additive loci. Subsequently, a quantitative trait loci (QTL) analysis of an F6 population of recombinant inbred lines identified five major loci contributing to the phenotype together accounting for over 60% of the total genetic variance. One locus on chromosome 1D accounted for 34% of the genotypic variation. Genetic control of rhizosheath size appears to be relatively simple and markers based on the QTL provide valuable tools for marker assisted breeding.


Subject(s)
Phosphorus/metabolism , Quantitative Trait Loci , Triticum/growth & development , Triticum/genetics , Hydrogen-Ion Concentration , Plant Roots/genetics , Plant Roots/growth & development , Soil/chemistry
16.
Environ Microbiol ; 18(6): 1805-16, 2016 06.
Article in English | MEDLINE | ID: mdl-26184386

ABSTRACT

Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Trees/microbiology , Bacteria/classification , Bacteria/genetics , Canada , Carbon/analysis , Climate , Forests , Soil/chemistry
17.
Environ Sci Technol ; 49(22): 13238-45, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26492192

ABSTRACT

Phosphorus (P) is an essential element for life, an innate constituent of soil organic matter, and a major anthropogenic input to terrestrial ecosystems. The supply of P to living organisms is strongly dependent on the dynamics of soil organic P. However, fluxes of P through soil organic matter remain unclear because only a minority (typically <30%) of soil organic P has been identified as recognizable biomolecules of low molecular weight (e.g., inositol hexakisphosphates). Here, we use (31)P nuclear magnetic resonance spectroscopy to determine the speciation of organic P in soil extracts fractionated into two molecular weight ranges. Speciation of organic P in the high molecular weight fraction (>10 kDa) was markedly different to that of the low molecular weight fraction (<10 kDa). The former was dominated by a broad peak, which is consistent with P bound by phosphomonoester linkages of supra-/macro-molecular structures, whereas the latter contained all of the sharp peaks that were present in unfractionated extracts, along with some broad signal. Overall, phosphomonoesters in supra-/macro-molecular structures were found to account for the majority (61% to 73%) of soil organic P across the five diverse soils. These soil phosphomonoesters will need to be integrated within current models of the inorganic-organic P cycle of soil-plant terrestrial ecosystems.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Phosphorus/chemistry , Soil/chemistry , Ecosystem , Molecular Weight , Phosphorus/analysis , Phosphorus Isotopes
18.
Can J Microbiol ; 61(12): 885-97, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26435508

ABSTRACT

Organic phosphorus (P) is abundant in most soils but is largely unavailable to plants. Pseudomonas spp. can improve the availability of P to plants through the production of phytases and organic anions. Gluconate is a major component of Pseudomonas organic anion production and may therefore play an important role in the mineralization of insoluble organic P forms such as calcium-phytate (CaIHP). Organic anion and phytase production was characterized in 2 Pseudomonas spp. soil isolates (CCAR59, Ha200) and an isogenic mutant of strain Ha200, which lacked a functional glucose dehydrogenase (Gcd) gene (strain Ha200 gcd::Tn5B8). Wild-type and mutant strains of Pseudomonas spp. were evaluated for their ability to solubilize and hydrolyze CaIHP and to promote the growth and assimilation of P by tobacco plants. Gluconate, 2-keto-gluconate, pyruvate, ascorbate, acetate, and formate were detected in Pseudomonas spp. supernatants. Wild-type pseudomonads containing a functional gcd could produce gluconate and mineralize CaIHP, whereas the isogenic mutant could not. Inoculation with Pseudomonas improved the bioavailability of CaIHP to tobacco plants, but there was no difference in plant growth response due to Gcd function. Gcd function is required for the mineralization of CaIHP in vitro; however, further studies will be needed to quantify the relative contribution of specific organic anions such as gluconate to plant growth promotion by soil pseudomonads.


Subject(s)
Calcium/metabolism , Gluconates/metabolism , Nicotiana/metabolism , Phytic Acid/metabolism , Pseudomonas/metabolism , 6-Phytase/genetics , Biological Availability , Phosphorus/metabolism , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil Microbiology , Nicotiana/growth & development , Nicotiana/microbiology
19.
Appl Environ Microbiol ; 81(9): 3016-28, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25710367

ABSTRACT

Cellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers. For comparison, the diversity and abundance of general bacteria and fungi were also assessed. Phylogenetic analysis of the nucleotide sequences of 80 clones revealed significant new diversity of actinobacterial GH48 genes, and analysis of translated protein sequences showed that these enzymes are likely to represent functional cellobiohydrolases. The soil C/N ratio was the primary environmental driver of GH48 community compositions across sites and land uses, demonstrating the importance of substrate quality in their ecology. Furthermore, mid-infrared (MIR) spectrometry-predicted humic organic carbon was distinctly more important to GH48 diversity than to total bacterial and fungal diversity. This suggests a link between the actinobacterial GH48 community and soil organic carbon dynamics and highlights the potential importance of actinobacteria in the terrestrial carbon cycle.


Subject(s)
Actinobacteria/enzymology , Carbon/analysis , Cellulose 1,4-beta-Cellobiosidase/genetics , Genetic Variation , Nitrogen/analysis , Soil Microbiology , Soil/chemistry , Actinobacteria/classification , Actinobacteria/genetics , Cellulose 1,4-beta-Cellobiosidase/classification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fungi/classification , Fungi/genetics , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Spectrophotometry, Infrared
20.
Environ Microbiol ; 17(8): 2677-89, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25040229

ABSTRACT

Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Microbiota , Soil Microbiology , Soil/chemistry , Bacteria/genetics , Carbon/analysis , Ecological and Environmental Phenomena , Ecosystem , Fungi/genetics , Nitrogen/analysis , Phosphorus/analysis , Polymorphism, Restriction Fragment Length/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...