Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 13(3): e0193807, 2018.
Article in English | MEDLINE | ID: mdl-29590143

ABSTRACT

BACKGROUND: Almost one million prematurely born infants die annually from respiratory insufficiency, predominantly in countries with limited access to respiratory support for neonates. The primary hypothesis tested in the present study was that a modified device for bubble nasal continuous positive airway pressure (Bn-CPAP) would provide lower work of spontaneous breathing, estimated by esophageal pressure-rate products. METHODS: Infants born <32 weeks gestation and stable on Bn-CPAP with FiO2 <0.30 were studied within 72 h following delivery. Esophageal pressures during spontaneous breathing were measured during 2 h on standard Bn-CPAP, then 2 h with Bn-CPAP using a modified bubble device presently termed Seattle-PAP, which produces a different pattern of pressure fluctuations and which provided greater respiratory support in preclinical studies, then 2 h on standard Bn-CPAP. RESULTS: All 40 infants enrolled completed the study and follow-up through 36 wks post menstrual age or hospital discharge, whichever came first. No infants were on supplemental oxygen at completion of follow-up. No infants developed pneumothoraces or nasal trauma, and no adverse events attributed to the study were observed. Pressure-rate products on the two devices were not different, but effort of breathing, assessed by areas under esophageal pressure-time curves, was lower with Seattle-PAP than with standard Bn-CPAP. CONCLUSION: Use of Seattle-PAP to implement Bn-CPAP lowers the effort of breathing exerted even by relatively healthy spontaneously breathing premature neonates. Whether the lower effort of breathing observed with Seattle-PAP translates to improvements in neonatal mortality or morbidity will need to be determined by studies in appropriate patient populations.


Subject(s)
Continuous Positive Airway Pressure/instrumentation , Infant, Premature/physiology , Respiration , Ampicillin/therapeutic use , Analysis of Variance , Anti-Bacterial Agents/therapeutic use , Area Under Curve , Esophagus/drug effects , Esophagus/physiopathology , Female , Follow-Up Studies , Gentamicins/therapeutic use , Heart Rate , Humans , Infant , Infant, Newborn , Linear Models , Male , Physical Exertion/drug effects , Pressure , Respiration/drug effects , Time Factors
2.
Respir Care ; 60(3): 371-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25425706

ABSTRACT

BACKGROUND: High-frequency pressure oscillations created by gas bubbling through an underwater seal during bubble CPAP may enhance ventilation and aid in lung recruitment in premature infants. We hypothesized that there are no differences in the magnitude of oscillations in lung volume (ΔV) in a preterm neonatal lung model when different bubble CPAP systems are used. METHODS: An anatomically realistic replica of an infant nasal airway model was attached to a Silastic test lung sealed within a calibrated plethysmograph. Nasal prongs were affixed to the simulated neonate and supported using bubble CPAP systems set at 6 cm H2O. ΔV was calculated using pressure measurements obtained from the plethysmograph. RESULTS: The Fisher & Paykel Healthcare bubble CPAP system provided greater ΔV than any of the other devices at all of the respective bias flows (P < .05). The Fisher & Paykel Healthcare and Babi.Plus systems generally provided ΔV at lower frequencies than the other bubble CPAP systems. The magnitude of ΔV increased at bias flows of > 4 L/min in the Fisher & Paykel Healthcare, Airways Development, and homemade systems, but appeared to decrease as bias flow increased with the Babi.Plus system. CONCLUSIONS: The major finding of this study is that bubble CPAP can provide measureable ventilation effects in an infant lung model. We speculate that the differences noted in ΔV between the different devices are a combination of the circuit/nasal prong configuration, bubbler configuration, and frequency of oscillations. Additional testing is needed in spontaneously breathing infants to determine whether a physiologic benefit exists when using the different bubble CPAP systems.


Subject(s)
Continuous Positive Airway Pressure/instrumentation , High-Frequency Ventilation/instrumentation , Models, Biological , Respiratory Distress Syndrome, Newborn/therapy , Ventilators, Mechanical/standards , Work of Breathing/physiology , Equipment Design , Humans , Infant, Newborn , Respiratory Distress Syndrome, Newborn/physiopathology , Tidal Volume
3.
Respir Care ; 58(11): 1840-6, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23481441

ABSTRACT

BACKGROUND: Bubble CPAP is frequently used in spontaneously breathing infants with lung disease. Often bubble CPAP systems lack pressure alarms and pressure-release valves. We observed a large volume of condensate in the exhalation limb of a patient circuit and conducted a series of experiments to test the hypothesis that accumulated condensate could affect delivered pressures. METHODS: An anatomically accurate nasal airway model of a preterm infant was attached to a spontaneously breathing lung model. A bubble CPAP system was attached to the nasal airway with bi-nasal short prongs, and the rate of fluid condensation was measured. Next, tracheal pressures were monitored digitally to detect changes in airway pressure related to condensate accumulation. Measurements were obtained with volumes of 0, 5, 10, 15, and 20 mL of water in the exhalation limb, at flows of 4, 6, 8, and 10 L/min. Measurements with 20 mL in the exhalation limb were recorded with and without a pressure-relief valve in the circuit. RESULTS: The rate of condensate accumulation was 3.8 mL/h. At volumes of ≥ 10 mL, noticeable alterations in the airway pressure waveforms and significant increases in mean tracheal pressure were observed. The pressure-relief valve effectively attenuated peak tracheal pressure, but only decreased mean pressure by 0.5-1.5 cm H2O. CONCLUSIONS: Condensate in the exhalation limb of the patient circuit during bubble CPAP can significantly increase pressure delivered to the patient. The back and forth movement of this fluid causes oscillations in airway pressure that are much greater than the oscillations created by gas bubbling out the exhalation tube into the water bath. We recommend continuously monitoring pressure at the nasal airway interface, placing an adjustable pressure-relief valve in the circuit, set to 5 cm H2O above the desired mean pressure, and emptying fluid from the exhalation limb every 2-3 hours.


Subject(s)
Airway Resistance/physiology , Continuous Positive Airway Pressure/instrumentation , Infant, Premature , Models, Biological , Respiratory Distress Syndrome, Newborn/therapy , Ventilators, Mechanical , Work of Breathing/physiology , Equipment Design , Humans , Infant, Extremely Low Birth Weight , Infant, Newborn , Lung Compliance , Respiratory Distress Syndrome, Newborn/physiopathology , Tidal Volume
4.
Pediatr Res ; 68(6): 526-30, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20814347

ABSTRACT

We have developed two devices: a high-amplitude bubble continuous positive airway pressure (HAB-CPAP) and an inexpensive bubble intermittent mandatory ventilator (B-IMV) to test the hypotheses that simple, inexpensive devices can provide gas exchange similar to that of bubble CPAP (B-CPAP) and conventional mechanical ventilation (CMV). Twelve paralyzed juvenile rabbits were intubated, stabilized on CMV, and then switched to CPAP. On identical mean airway pressures (MAPs), animals were unable to maintain pulse oximeter oxygen saturation (SpO2) >80% on conventional B-CPAP, but all animals oxygenated well (97.3 ± 2.1%) on HAB-CPAP. In fact, arterial partial pressures of O2 (Pao2) were higher during HAB-CPAP than during CMV (p = 0.01). After repeated lung lavages, arterial partial pressures of CO2 (Paco2) were lower with B-IMV than with CMV (p < 0.0001), despite identical ventilator settings. In lavaged animals, when HAB-CPAP was compared with CMV at the same MAP and 100% O2, no differences were observed in Pao2, but Paco2 levels were higher with HAB-CPAP (70 ± 7 versus 50 ± 5 mm Hg; p < 0.05). Arterial blood pressures were not impaired by HAB-CPAP or B-IMV. The results confirm that simple inexpensive devices can provide respiratory support in the face of severe lung disease and could extend the use of respiratory support for preterm infants into severely resource-limited settings.


Subject(s)
Continuous Positive Airway Pressure/instrumentation , Continuous Positive Airway Pressure/methods , Intermittent Positive-Pressure Ventilation/instrumentation , Intermittent Positive-Pressure Ventilation/methods , Paralysis/therapy , Pulmonary Gas Exchange/physiology , Animals , Continuous Positive Airway Pressure/economics , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/economics , Infant, Premature, Diseases/therapy , Intermittent Positive-Pressure Ventilation/economics , Rabbits , Respiration , Respiratory Distress Syndrome, Newborn/economics , Respiratory Distress Syndrome, Newborn/therapy
5.
Pediatr Res ; 67(6): 624-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20308940

ABSTRACT

Bubble continuous positive airway pressure (B-CPAP) applies small-amplitude, high-frequency oscillations in airway pressure (DeltaPaw) that may improve gas exchange in infants with respiratory disease. We developed a device, high-amplitude B-CPAP (HAB-CPAP), which provides greater DeltaPaw than B-CPAP provides. We studied the effects of different operational parameters on DeltaPaw and volumes of gas delivered to a mechanical infant lung model. In vivo studies tested the hypothesis that HAB-CPAP provides noninvasive respiratory support greater than that provided by B-CPAP. Lavaged juvenile rabbits were stabilized on ventilator nasal CPAP. The animals were then supported at the same mean airway pressure, bias flow, and fraction of inspired oxygen (FiO2) required for stabilization, whereas the bubbler angle was varied in a randomized crossover design at exit angles, relative to vertical, of 0 (HAB-CPAP0; equivalent to conventional B-CPAP), 90 (HAB-CPAP90), and 135 degrees (HAB-CPAP135). Arterial blood gases and pressure-rate product (PRP) were measured after 15 min at each bubbler angle. Pao2 levels were higher (p<0.007) with HAB-CPAP135 than with conventional B-CPAP. PaCO2 levels did not differ (p=0.073) among the three bubbler configurations. PRP with HAB-CPAP135 were half of the PRP with HAB-CPAP0 or HAB-CPAP90 (p=0.001). These results indicate that HAB-CPAP135 provides greater respiratory support than conventional B-CPAP does.


Subject(s)
Continuous Positive Airway Pressure , Lung/physiology , Respiration , Age Factors , Animals , Continuous Positive Airway Pressure/instrumentation , Equipment Design , Female , Humans , Infant , Inhalation , Lung/anatomy & histology , Models, Anatomic , Models, Animal , Oscillometry , Oxygen/blood , Pressure , Pulmonary Gas Exchange , Rabbits , Time Factors , Ventilators, Mechanical , Work of Breathing
6.
Respir Care ; 53(11): 1450-60, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18957147

ABSTRACT

BACKGROUND: Small endotracheal tubes (ETTs) and neonatal ventilators can impact gas exchange, work of breathing, and lung-mechanics measurements in infants, by increasing the expiratory resistance (R(E)) to gas flow. METHODS: We tested two each of the Babylog 8000plus, Avea, Carestation, and Servo-i ventilators. In the first phase of the study we evaluated (1) the imposed R(E) of an ETT and ventilator system during simulated passive breathing at various tidal volume (V(T)), positive end-expiratory pressure (PEEP), and frequency settings, and (2) the intrinsic PEEP at various ventilator settings. In the second phase of this study we evaluated the imposed expiratory work of breathing (WOB) of the ETT and ventilator system at various PEEP levels during simulated spontaneous breathing using an infant lung model. Pressure and flow were measured continuously, and we calculated the imposed R(E) of the ETT and each ventilator, and the intrinsic PEEP with various PEEP, V(T), and frequency settings. We measured the imposed expiratory WOB with several PEEP levels during a simulated spontaneous breathing pattern. RESULTS: The ventilator's contribution to the imposed R(E) was greater than that of the ETT with nearly all of the ventilators tested. There were significant differences in ventilator-imposed R(E) between the ventilator brands at various PEEP, V(T), and frequency settings. The Babylog 8000plus consistently had the lowest ventilator-imposed R(E) in the majority of the test conditions. There was no intrinsic PEEP (>1 cm H(2)O) in any of the test conditions with any ventilator brand. There were also no significant differences in the imposed expiratory WOB between ventilator brands during simulated spontaneous breathing. CONCLUSIONS: The major cause of R(E) appears to be the ventilator exhalation valve. Neonatal ventilators that use a set constant flow during inhalation and exhalation appear to have less R(E) than ventilators that use a variable bias flow during exhalation. Clinical studies are needed to determine whether the imposed R(E) of these ventilator designs impacts gas exchange, lung mechanics, or ventilator weaning.


Subject(s)
Airway Resistance/physiology , Exhalation/physiology , Models, Biological , Positive-Pressure Respiration/instrumentation , Ventilators, Mechanical , Equipment Design , Humans , Infant, Newborn , Intensive Care Units, Neonatal , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Tidal Volume/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...