Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(26): E2371-80, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23757500

ABSTRACT

The clinical severity of the neurodegenerative disorder spinal muscular atrophy (SMA) is dependent on the levels of functional Survival Motor Neuron (SMN) protein. Consequently, current strategies for developing treatments for SMA generally focus on augmenting SMN levels. To identify additional potential therapeutic avenues and achieve a greater understanding of SMN, we applied in vivo, in vitro, and in silico approaches to identify genetic and biochemical interactors of the Drosophila SMN homolog. We identified more than 300 candidate genes that alter an Smn-dependent phenotype in vivo. Integrating the results from our genetic screens, large-scale protein interaction studies, and bioinformatic analysis, we define a unique interactome for SMN that provides a knowledge base for a better understanding of SMA.


Subject(s)
Drosophila Proteins/genetics , Genes, Insect , RNA-Binding Proteins/genetics , Animals , Animals, Genetically Modified , Gene Regulatory Networks , Humans , Knowledge Bases , Neuromuscular Junction/genetics , Phenotype , RNA Interference , Species Specificity , Spinal Muscular Atrophies of Childhood/genetics
2.
Am J Physiol Lung Cell Mol Physiol ; 293(5): L1183-93, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17720875

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a smoking-related disease that lacks effective therapies due partly to the poor understanding of disease pathogenesis. The aim of this study was to identify molecular pathways that could be responsible for the damaging consequences of smoking. To do this, we employed Gene Set Enrichment Analysis to analyze differences in global gene expression, which we then related to the pathological changes induced by cigarette smoke (CS). Sprague-Dawley rats were exposed to whole body CS for 1 day and for various periods up to 8 mo. Gene Set Enrichment Analysis of microarray data identified that metabolic processes were most significantly increased early in the response to CS. Gene sets involved in stress response and inflammation were also upregulated. CS exposure increased neutrophil chemokines, cytokines, and proteases (MMP-12) linked to the pathogenesis of COPD. After a transient acute response, the CS-exposed rats developed a distinct molecular signature after 2 wk, which was followed by the chronic phase of the response. During this phase, gene sets related to immunity and defense progressively increased and predominated at the later time points in smoke-exposed rats. Chronic CS inhalation recapitulated many of the phenotypic changes observed in COPD patients including oxidative damage to macrophages, a slowly resolving inflammation, epithelial damage, mucus hypersecretion, airway fibrosis, and emphysema. As such, it appears that metabolic pathways are central to dealing with the stress of CS exposure; however, over time, inflammation and stress response gene sets become the most significantly affected in the chronic response to CS.


Subject(s)
Biomarkers/metabolism , Gene Expression Profiling , Lung/metabolism , Smoking/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Male , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...