Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Neurodyn ; 17(1): 63-104, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36704633

ABSTRACT

We conducted (I) 18 event-related potential (ERP) field tests to detect concealed information regarding major terrorist crimes and other real-world crimes and (II) 5 ERP tests regarding participation in a classified counterterrorism operation. This study is a test of the brain fingerprinting scientific standards hypothesis: that a specific set of methods for event-related potential (ERP) concealed information tests (CIT) known as the brain fingerprinting scientific standards provide the sufficient conditions to produce less than 1% error rate and greater than 95% median statistical confidence for individual determinations of whether the tested information is stored in each subject's brain. All previous published results in all laboratories are compatible with this hypothesis. We recorded P300 and P300-MERMER ERP responses to visual text stimuli of three types: targets contain known information, irrelevants contain unknown/irrelevant information, and probes contain the situation-relevant information to be tested, known only to the perpetrator and investigators. Classification CIT produced significantly better results than comparison CIT, independent of classification criteria. Classification CIT had 0% error rate; comparison CIT had 6% error rate. As in previous studies, classification-CIT median statistical confidences were approximately 99%, whereas comparison CIT statistical confidences were no better than chance for information-absent (IA) subjects (who did not know the tested information). Over half of the comparison-CIT IA determinations were invalid due to a less-than-chance computed probability of being correct. Experiment (I) results for median statistical confidence: Classification CIT, IA subjects: 98.6%; information-present (IP) subjects (who know the tested information): 99.9%; comparison CIT, IA subjects: 48.7%; IP subjects: 99.5%. Experiment (II) results (Classification CIT): error rate 0%, median statistical confidence 96.6%. Countermeasures had no effect on the classification CIT. These results, like all previous results in our laboratory and all others, support the brain fingerprinting scientific standards hypothesis and indicate that the classification CIT is a necessary condition for a reliable, accurate, and valid brainwave-based CIT. The comparison CIT, by contrast, produces high error rates and IA statistical confidences no better than chance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09795-1.

2.
Cytometry A ; 87(2): 166-75, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25598345

ABSTRACT

Fluorescence activated cell sorting is the technique most commonly used to separate primary mammary epithelial sub-populations. Many studies incorporate this technique before analyzing gene expression within specific cellular lineages. However, to our knowledge, no one has examined the effects of fluorescence activated cell sorting (FACS) separation on short-term transcriptional profiles. In this study, we isolated a heterogeneous mixture of cells from the mouse mammary gland. To determine the effects of the isolation and separation process on gene expression, we harvested RNA from the cells before enzymatic digestion, following enzymatic digestion, and following a mock FACS sort where the entire cohort of cells was retained. A strict protocol was followed to minimize disruption to the cells, and to ensure that no subpopulations were enriched or lost. Microarray analysis demonstrated that FACS causes minimal disruptions to gene expression patterns, but prior steps in the mammary cell isolation process are followed by upregulation of 18 miRNA's and rapid decreases in their predicted target transcripts. © 2015 International Society for Advancement of Cytometry.


Subject(s)
Flow Cytometry/methods , Gene Expression/genetics , Mammary Glands, Animal/cytology , MicroRNAs/biosynthesis , Animals , Female , Gene Expression Profiling , Mice , Mice, Inbred C3H , MicroRNAs/genetics , Up-Regulation
3.
Front Neurosci ; 8: 410, 2014.
Article in English | MEDLINE | ID: mdl-25565941

ABSTRACT

A classification concealed information test (CIT) used the "brain fingerprinting" method of applying P300 event-related potential (ERP) in detecting information that is (1) acquired in real life and (2) unique to US Navy experts in military medicine. Military medicine experts and non-experts were asked to push buttons in response to three types of text stimuli. Targets contain known information relevant to military medicine, are identified to subjects as relevant, and require pushing one button. Subjects are told to push another button to all other stimuli. Probes contain concealed information relevant to military medicine, and are not identified to subjects. Irrelevants contain equally plausible, but incorrect/irrelevant information. Error rate was 0%. Median and mean statistical confidences for individual determinations were 99.9% with no indeterminates (results lacking sufficiently high statistical confidence to be classified). We compared error rate and statistical confidence for determinations of both information present and information absent produced by classification CIT (Is a probe ERP more similar to a target or to an irrelevant ERP?) vs. comparison CIT (Does a probe produce a larger ERP than an irrelevant?) using P300 plus the late negative component (LNP; together, P300-MERMER). Comparison CIT produced a significantly higher error rate (20%) and lower statistical confidences: mean 67%; information-absent mean was 28.9%, less than chance (50%). We compared analysis using P300 alone with the P300 + LNP. P300 alone produced the same 0% error rate but significantly lower statistical confidences. These findings add to the evidence that the brain fingerprinting methods as described here provide sufficient conditions to produce less than 1% error rate and greater than 95% median statistical confidence in a CIT on information obtained in the course of real life that is characteristic of individuals with specific training, expertise, or organizational affiliation.

4.
Cogn Neurodyn ; 7(4): 263-99, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23869200

ABSTRACT

Brain fingerprinting detects concealed information stored in the brain by measuring brainwave responses. We compared P300 and P300-MERMER event-related brain potentials for error rate/accuracy and statistical confidence in four field/real-life studies. 76 tests detected presence or absence of information regarding (1) real-life events including felony crimes; (2) real crimes with substantial consequences (either a judicial outcome, i.e., evidence admitted in court, or a $100,000 reward for beating the test); (3) knowledge unique to FBI agents; and (4) knowledge unique to explosives (EOD/IED) experts. With both P300 and P300-MERMER, error rate was 0 %: determinations were 100 % accurate, no false negatives or false positives; also no indeterminates. Countermeasures had no effect. Median statistical confidence for determinations was 99.9 % with P300-MERMER and 99.6 % with P300. Brain fingerprinting methods and scientific standards for laboratory and field applications are discussed. Major differences in methods that produce different results are identified. Markedly different methods in other studies have produced over 10 times higher error rates and markedly lower statistical confidences than those of these, our previous studies, and independent replications. Data support the hypothesis that accuracy, reliability, and validity depend on following the brain fingerprinting scientific standards outlined herein.

SELECTION OF CITATIONS
SEARCH DETAIL
...