Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Cell Biol ; 78: 102119, 2022 10.
Article in English | MEDLINE | ID: mdl-35964523

ABSTRACT

Both neurons and glia in mammalian brains are highly ramified. Neurons form complex neural networks using axons and dendrites. Axons are long with few branches and form pre-synaptic boutons that connect to target neurons and effector tissues. Dendrites are shorter, highly branched, and form post-synaptic boutons. Astrocyte processes contact synapses and blood vessels in order to regulate neuronal activity and blood flow, respectively. Oligodendrocyte processes extend toward axons to make myelin sheaths. Microglia processes dynamically survey their environments. Here, we describe the local secretory system (ER and Golgi) in neuronal and glial processes. We focus on Golgi outpost functions in acentrosomal microtubule nucleation, cargo trafficking, and protein glycosylation. Thus, satellite ER and Golgi are critical for local structure and function in neurons and glia.


Subject(s)
Axons , Dendrites , Animals , Axons/metabolism , Dendrites/metabolism , Golgi Apparatus/metabolism , Mammals , Neurons , Synapses
2.
mBio ; 11(5)2020 09 08.
Article in English | MEDLINE | ID: mdl-32900799

ABSTRACT

Prebiotics confer benefits to human health, often by promoting the growth of gut bacteria that produce metabolites valuable to the human body, such as short-chain fatty acids (SCFAs). While prebiotic selection has strongly focused on maximizing the production of SCFAs, less attention has been paid to gases, a by-product of SCFA production that also has physiological effects on the human body. Here, we investigate how the content and volume of gas production by human gut microbiota are affected by the chemical composition of the prebiotic and the community composition of the microbiota. We first constructed a linear system model based on mass and electron balance and compared the theoretical product ranges of two prebiotics, inulin and pectin. Modeling shows that pectin is more restricted in product space, with less potential for H2 but more potential for CO2 production. An ex vivo experimental system showed pectin degradation produced significantly less H2 than inulin, but CO2 production fell outside the theoretical product range, suggesting fermentation of fecal debris. Microbial community composition also impacted results: methane production was dependent on the presence of Methanobacteria, while interindividual differences in H2 production during inulin degradation were driven by a Lachnospiraceae taxon. Overall, these results suggest that both the chemistry of the prebiotic and the composition of the microbiota are relevant to gas production. Metabolic processes that are relatively prevalent in the microbiome, such as H2 production, will depend more on substrate, while rare metabolisms such as methanogenesis depend more strongly on microbiome composition.IMPORTANCE Prebiotic fermentation in the gut often leads to the coproduction of short-chain fatty acids (SCFAs) and gases. While excess gas production can be a potential problem for those with functional gut disorders, gas production is rarely considered during prebiotic design. In this study, we combined the use of theoretical models and an ex vivo experimental platform to illustrate that both the chemical composition of the prebiotic and the community composition of the human gut microbiota can affect the volume and content of gas production during prebiotic fermentation. Specifically, more prevalent metabolic processes such as hydrogen production were strongly affected by the oxidation state of the probiotic, while rare metabolisms such as methane production were less affected by the chemical nature of the substrate and entirely dependent on the presence of Methanobacteria in the microbiota.


Subject(s)
Dietary Fiber/metabolism , Fermentation , Gastrointestinal Microbiome/physiology , Intestines/physiology , Prebiotics/analysis , Adult , Bacteria/metabolism , Fatty Acids, Volatile/metabolism , Feces/microbiology , Female , Gases , Healthy Volunteers , Humans , Hydrogen/metabolism , Male , Methane/biosynthesis , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...