Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 8(1)2021 12 17.
Article in English | MEDLINE | ID: mdl-34874308

ABSTRACT

The strongin vitroevidence that proton Relative Biological Effectiveness (RBE) varies with Linear Energy Transfer (LET) has led to an interest in applying LET within treatment planning. However, there is a lack of consensus on LET definition, Monte Carlo (MC) parameters or clinical methodology. This work aims to investigate how common variations of LET definition may affect potential clinical applications. MC simulations (GATE/GEANT4) were used to calculate absorbed dose and different types of LET for a simple Spread Out Bragg Peak (SOBP) and for four clinical PBT plans covering a range of tumour sites. Variations in the following LET calculation methods were considered: (i) averaging (dose-averaged LET (LETd) & track-averaged LET); (ii) scoring (LETdto water, to medium and to mass density); (iii) particle inclusion (LETdto all protons, to primary protons and to particles); (iv) MC settings (hit type and Maximum Step Size (MSS)). LET distributions were compared using: qualitative comparison, LET Volume Histograms (LVHs), single value criteria (maximum and mean values) and optimised LET-weighted dose models. Substantial differences were found between LET values in averaging, scoring and particle type. These differences depended on the methodology, but for one patient a difference of ∼100% was observed between the maximum LETdfor all particles and maximum LETdfor all protons within the brainstem in the high isodose region (4 keVµm-1and 8 keVµm-1respectively). An RBE model using LETdincluding heavier ions was found to predict substantially different LET-weighted dose compared to those using other LET definitions. In conclusion, the selection of LET definition may affect the results of clinical metrics considered in treatment planning and the results of an RBE model. The authors' advocate for the scoring of dose-averaged LET to water for primary and secondary protons using a random hit type and automated MSS.


Subject(s)
Linear Energy Transfer , Proton Therapy , Humans , Monte Carlo Method , Proton Therapy/methods , Protons , Relative Biological Effectiveness
2.
Br J Radiol ; 93(1114): 20200228, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32726141

ABSTRACT

OBJECTIVES: Software re-calculation of proton pencil beam scanning plans provides a method of verifying treatment planning system (TPS) dose calculations prior to patient treatment. This study describes the implementation of AutoMC, a Geant4 v10.3.3/Gate v8.1 (Gate-RTion v1.0)-based Monte-Carlo (MC) system for automated plan re-calculation, and presents verification results for 153 patients (730 fields) planned within year one of the proton service at The Christie NHS Foundation Trust. METHODS: A MC beam model for a Varian ProBeam delivery system with four range-shifter options (none, 2 cm, 3 cm, 5 cm) was derived from beam commissioning data and implemented in AutoMC. MC and TPS (Varian Eclipse v13.7) calculations of 730 fields in solid-water were compared to physical plan-specific quality assurance (PSQA) measurements acquired using a PTW Octavius 1500XDR array and PTW 31021 Semiflex 3D ion chamber. RESULTS: TPS and MC showed good agreement with array measurements, evaluated using γ analyses at 3%, 3 mm with a 10% lower dose threshold:>94% of fields calculated by the TPS and >99% of fields calculated by MC had γ ≤ 1 for>95% of measurement points within the plane. TPS and MC also showed good agreement with chamber measurements of absolute dose, with systematic differences of <1.5% for all range-shifter options. CONCLUSIONS: Reliable independent verification of the TPS dose calculation is a valuable complement to physical PSQA and may facilitate reduction of the physical PSQA workload alongside a thorough delivery system quality assurance programme. ADVANCES IN KNOWLEDGE: A Gate/Geant4-based MC system is thoroughly validated against an extensive physical PSQA dataset for 730 clinical fields, showing that clinical implementation of MC for PSQA is feasible.


Subject(s)
Proton Therapy/methods , Quality Assurance, Health Care , Radiotherapy Planning, Computer-Assisted , Algorithms , Calibration , England , Humans , Monte Carlo Method , Radiotherapy Dosage , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...