Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 192(2): 195-207, 2022 02.
Article in English | MEDLINE | ID: mdl-34767812

ABSTRACT

To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.


Subject(s)
COVID-19/pathology , Animals , COVID-19/virology , Cricetinae , Disease Models, Animal , Female , Lung/pathology , Male , Mesocricetus , SARS-CoV-2
2.
J Neurovirol ; 26(4): 511-519, 2020 08.
Article in English | MEDLINE | ID: mdl-32488843

ABSTRACT

HIV-associated neuroinflammation is primarily driven by CNS macrophages including microglia. Regulation of these immune responses, however, remains to be characterized in detail. Using the SIV/macaque model of HIV, we evaluated CNS expression of triggering receptor expressed on myeloid cells 2 (TREM2) which is constitutively expressed by microglia and contributes to cell survival, proliferation, and differentiation. Loss-of-function mutations in TREM2 are recognized risk factors for neurodegenerative diseases including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Nasu-Hakola disease (NHD); recent reports have also indicated a role for TREM2 in HIV-associated neuroinflammation. Using in situ hybridization (ISH) and qRT-PCR, TREM2 mRNA levels were found to be significantly elevated in frontal cortex of macaques with SIV encephalitis compared with uninfected controls (P = 0.02). TREM2 protein levels were also elevated as measured by ELISA of frontal cortex tissue homogenates in these animals. Previously, we characterized the expression of CSF1R (colony-stimulating factor 1 receptor) in this model; the TREM2 and CSF1R promoters both contain a PU.1 binding site. While TREM2 and CSF1R mRNA levels in the frontal cortex were highly correlated (Spearman R = 0.79, P < 0.001), protein levels were not well correlated. In SIV-infected macaques released from ART to study viral rebound, neither TREM2 nor CSF1R mRNA increased with rebound viremia. However, CSF1R protein levels remained significantly elevated unlike TREM2 (P = 0.02). This differential expression suggests that TREM2 and CSF1R play unique, distinct roles in the pathogenesis of HIV CNS disease.


Subject(s)
Encephalitis, Viral/genetics , Macaca nemestrina/immunology , Macrophages/immunology , Membrane Glycoproteins/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/immunology , Animals , Antiretroviral Therapy, Highly Active/methods , Antiviral Agents/pharmacology , Drug Administration Schedule , Encephalitis, Viral/drug therapy , Encephalitis, Viral/immunology , Encephalitis, Viral/virology , Frontal Lobe/drug effects , Frontal Lobe/immunology , Frontal Lobe/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Macaca nemestrina/genetics , Macaca nemestrina/virology , Macrophages/drug effects , Macrophages/virology , Male , Membrane Glycoproteins/immunology , Microglia/drug effects , Microglia/immunology , Microglia/virology , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/growth & development , Trans-Activators/genetics , Trans-Activators/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...