Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
2.
Mol Psychiatry ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969716

ABSTRACT

Serotonergic psychedelics have potential therapeutic effects in treating anxiety and mood disorders, often after a single dose, and are suggested to have plasticity-inducing action. However, a comprehensive mechanism of action is still lacking. Here, we investigated how a single dose of the short-acting 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) acts on gene expression from microdissected brain regions (anterior cingulate cortex - ACC; basolateral amygdala - BLA; ventral hippocampus CA1 region - vCA1 and dentate gyrus-DG) of naive and stressed mice. Specifically, we compared gene expression of Arc, Zif268, BDNF, CREB, mTORC1, NR2A, TRIP8b, and NFkB in mice injected with 5-MeO-DMT or saline at different time points (1 h, 5 h, or 5 days prior). 5-MeO-DMT altered mRNA expression of immediate early genes Arc and ZiF268 in the ACC, BLA, and vCA1, while NR2A expression was decreased after 5 h in the vCA1. We also found a long-term increase in TRIP8b, a gene related to the modulation of neuronal activity, in the vCA1 after 5 days. Behaviorally, 5-MeO-DMT treated mice showed mixed anxiolytic and anxiogenic effects in the elevated plus maze and open field test 24 h or 5 days after treatment. However, pre-treated mice subjected to acute stress showed both lower corticosterone levels and robust anxiolytic effects of 5-MeO-DMT administration. Together, our findings provide insights into the molecular actions of 5-MeO-DMT in the brain related to anxiolytic effects of behavior.

3.
Sci Rep ; 14(1): 11281, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760450

ABSTRACT

5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a potent classical psychedelic known to induce changes in locomotion, behaviour, and sleep in rodents. However, there is limited knowledge regarding its acute neurophysiological effects. Local field potentials (LFPs) are commonly used as a proxy for neural activity, but previous studies investigating psychedelics have been hindered by confounding effects of behavioural changes and anaesthesia, which alter these signals. To address this gap, we investigated acute LFP changes in the hippocampus (HP) and medial prefrontal cortex (mPFC) of freely behaving rats, following 5-MeO-DMT administration. 5-MeO-DMT led to an increase of delta power and a decrease of theta power in the HP LFPs, which could not be accounted for by changes in locomotion. Furthermore, we observed a dose-dependent reduction in slow (20-50 Hz) and mid (50-100 Hz) gamma power, as well as in theta phase modulation, even after controlling for the effects of speed and theta power. State map analysis of the spectral profile of waking behaviour induced by 5-MeO-DMT revealed similarities to electrophysiological states observed during slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Our findings suggest that the psychoactive effects of classical psychedelics are associated with the integration of waking behaviours with sleep-like spectral patterns in LFPs.


Subject(s)
Hippocampus , Prefrontal Cortex , Sleep , Wakefulness , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Rats , Hippocampus/drug effects , Hippocampus/physiology , Wakefulness/drug effects , Wakefulness/physiology , Male , Sleep/drug effects , Sleep/physiology , Electroencephalography , Theta Rhythm/drug effects , Hallucinogens/pharmacology
4.
Curr Protoc ; 2(7): e457, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35822833

ABSTRACT

Laser Capture Microdissection (LCM) is a method that allows one to select and dissect well-defined structures, specific cell subpopulations, or even single cells from different types of tissue for subsequent extraction of DNA, RNA, or proteins. Its precision allows the dissection of specific groups of cells, avoiding unwanted cells. However, despite its efficiency, several steps can affect the sample RNA integrity. RNA instability represents a challenge in the LCM method, and low RNA integrity can introduce biases, as different transcripts often have different degradation rates. Here we describe an optimized protocol to provide good-concentration and high-quality RNA from specific structures: dentate gyrus and CA1 in the hippocampus, basolateral amygdala, and anterior cingulate cortex of mouse brain tissue. However, the protocol is applicable to other areas of interest. © 2022 Wiley Periodicals LLC. Basic Protocol: Laser capture microdissection of mouse brain tissue.


Subject(s)
Brain , RNA , Animals , Laser Capture Microdissection/methods , Mice , RNA/genetics , RNA Stability
5.
BMC Biol ; 20(1): 102, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35550106

ABSTRACT

BACKGROUND: The dorsal cochlear nucleus (DCN) is a region known to integrate somatosensory and auditory inputs and is identified as a potential key structure in the generation of phantom sound perception, especially noise-induced tinnitus. Yet, how altered homeostatic plasticity of the DCN induces and maintains the sensation of tinnitus is not clear. Here, we chemogenetically decrease activity of a subgroup of DCN neurons, Ca2+/Calmodulin kinase 2 α (CaMKII α)-positive DCN neurons, using Gi-coupled human M4 Designer Receptors Exclusively Activated by Designer Drugs (hM4Di DREADDs), to investigate their role in noise-induced tinnitus. RESULTS: Mice were exposed to loud noise (9-11kHz, 90dBSPL, 1h, followed by 2h of silence), and auditory brainstem responses (ABRs) and gap prepulse inhibition of acoustic startle (GPIAS) were recorded 2 days before and 2 weeks after noise exposure to identify animals with a significantly decreased inhibition of startle, indicating tinnitus but without permanent hearing loss. Neuronal activity of CaMKII α+ neurons expressing hM4Di in the DCN was lowered by administration of clozapine-N-oxide (CNO). We found that acutely decreasing firing rate of CaMKII α+ DCN units decrease tinnitus-like responses (p = 3e -3, n = 11 mice), compared to the control group that showed no improvement in GPIAS (control virus; CaMKII α-YFP + CNO, p = 0.696, n = 7 mice). Extracellular recordings confirmed CNO to decrease unit firing frequency of CaMKII α-hM4Di+ mice and alter best frequency and tuning width of response to sound. However, these effects were not seen if CNO had been previously administered during the noise exposure (n = 6 experimental and 6 control mice). CONCLUSION: We found that lowering DCN activity in mice displaying tinnitus-related behavior reduces tinnitus, but lowering DCN activity during noise exposure does not prevent noise-induced tinnitus. Our results suggest that CaMKII α-positive cells in the DCN are not crucial for tinnitus induction but play a significant role in maintaining tinnitus perception in mice.


Subject(s)
Cochlear Nucleus , Tinnitus , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cochlear Nucleus/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Mice , Perception , Tinnitus/etiology
6.
Article in English | MEDLINE | ID: mdl-32116619

ABSTRACT

Optogenetics is revolutionizing Neuroscience, but an often neglected effect of light stimulation of the brain is the generation of heat. In extreme cases, light-generated heat kills neurons, but mild temperature changes alter neuronal function. To date, most in vivo experiments rely on light stimulation of neural tissue using fiber-coupled lasers of various wavelengths. Brain tissue is irradiated with high light power that can be deleterious to neuronal function. Furthermore, absorbed light generates heat that can lead to permanent tissue damage and affect neuronal excitability. Thus, light alone can generate effects in neuronal function that are unrelated to the genuine "optogenetic effect." In this work, we perform a theoretical analysis to investigate the effects of heat transfer in rodent brain tissue for standard optogenetic protocols. More precisely, we first use the Kubelka-Munk model for light propagation in brain tissue to observe the absorption phenomenon. Then, we model the optothermal effect considering the common laser wavelengths (473 and 593 nm) used in optogenetic experiments approaching the time/space numerical solution of Pennes' bio-heat equation with the Finite Element Method. Finally, we then modeled channelrhodopsin-2 in a single and spontaneous-firing neuron to explore the effect of heat in light stimulated neurons. We found that, at commonly used light intensities, laser radiation considerably increases the temperature in the surrounding tissue. This effect alters action potential size and shape and causes an increase in spontaneous firing frequency in a neuron model. However, the shortening of activation time constants generated by heat in the single firing neuron model produces action potential failures in response to light stimulation. We also found changes in the power spectrum density and a reduction in the time required for synchronization in an interneuron network model of gamma oscillations. Our findings indicate that light stimulation with intensities used in optogenetic experiments may affect neuronal function not only by direct excitation of light sensitive ion channels and/or pumps but also by generating heat. This approach serves as a guide to design optogenetic experiments that minimize the role of tissue heating in the experimental outcome.

7.
Hippocampus ; 29(12): 1224-1237, 2019 12.
Article in English | MEDLINE | ID: mdl-31301163

ABSTRACT

The hippocampus is an extended structure displaying heterogeneous anatomical cell layers along its dorsoventral axis. It is known that dorsal and ventral regions show different integrity when it comes to functionality, innervation, gene expression, and pyramidal cell properties. Still, whether hippocampal interneurons exhibit different properties along the dorsoventral axis is not known. Here, we report electrophysiological properties of dorsal and ventral oriens lacunosum moleculare (OLM) cells from coronal sections of the Chrna2-cre mouse line. We found dorsal OLM cells to exhibit a significantly more depolarized resting membrane potential compared to ventral OLM cells, while action potential properties were similar between the two groups. We found ventral OLM cells to show a higher initial firing frequency in response to depolarizing current injections but also to exhibit a higher spike-frequency adaptation than dorsal OLM cells. Additionally, dorsal OLM cells displayed large membrane sags in response to negative current injections correlating with our results showing that dorsal OLM cells have more hyperpolarization-activated current (Ih ) compared to ventral OLM cells. Immunohistochemical examination indicates the h-current to correspond to hyperpolarization-activated cyclic nucleotide-gated subunit 2 (HCN2) channels. Computational studies suggest that Ih in OLM cells is essential for theta oscillations in hippocampal circuits, and here we found dorsal OLM cells to present a higher membrane resonance frequency than ventral OLM cells. Thus, our results highlight regional differences in membrane properties between dorsal and ventral OLM cells allowing this interneuron to differently participate in the generation of hippocampal theta rhythms depending on spatial location along the dorsoventral axis of the hippocampus.


Subject(s)
Action Potentials/physiology , Hippocampus/physiology , Interneurons/physiology , Membrane Potentials/physiology , Receptors, Nicotinic/physiology , Animals , Female , Male , Mice , Mice, Transgenic
9.
Hippocampus ; 29(8): 755-761, 2019 08.
Article in English | MEDLINE | ID: mdl-30767318

ABSTRACT

Prolonged increases in excitation can trigger cell-wide homeostatic responses in neurons, altering membrane channels, promoting morphological changes, and ultimately reducing synaptic weights. However, how synaptic downscaling interacts with classical forms of Hebbian plasticity is still unclear. In this study, we investigated whether chronic optogenetic stimulation of hippocampus CA1 pyramidal neurons in freely moving mice could (a) cause morphological changes reminiscent of homeostatic scaling, (b) modulate synaptic currents that might compensate for chronic excitation, and (c) lead to alterations in Hebbian plasticity. After 24 hr of stimulation with 15-ms blue light pulses every 90 s, dendritic spine density and area were reduced in the CA1 region of mice expressing channelrhodopsin-2 (ChR2) when compared to controls. This protocol also reduced the amplitude of mEPSCs for both the AMPA and NMDA components in ex vivo slices obtained from ChR2-expressing mice immediately after the end of stimulation. Finally, chronic stimulation impaired the induction of LTP and facilitated that of LTD in these slices. Our results indicate that neuronal responses to prolonged network excitation can modulate subsequent Hebbian plasticity in the hippocampus.


Subject(s)
Action Potentials/physiology , Dendritic Spines/physiology , Hippocampus/physiology , Neuronal Plasticity/physiology , Animals , Mice , Neurons/physiology , Optogenetics , Synapses/physiology
10.
Hippocampus ; 29(1): 15-25, 2019 01.
Article in English | MEDLINE | ID: mdl-30152905

ABSTRACT

Salicylate intoxication is a cause of tinnitus in humans and it is often used to produce tinnitus-like perception in animal models. Here, we assess whether salicylate induces anxiety-like electrophysiological and behavioral signs. Using microwire electrode arrays, we recorded local field potential in the ventral and, in some experiments dorsal hippocampus, in an open field arena 1 hr after salicylate (300 mg/kg) injection. We found that animals treated with salicylate moved dramatically less than saline treated animals. Salicylate-treated animals showed a strong 4-6 Hz (type 2) oscillation in the ventral hippocampus (with smaller peaks in dorsal hippocampus electrodes). Coherence in the 4-6 Hz-theta band was low in the ventral and dorsal hippocampus when compared to movement-related theta coherence (7-10 Hz). Moreover, movement related theta oscillation frequency decreased and its dependency on running speed was abolished. Our results suggest that salicylate-induced theta is mostly restricted to the ventral hippocampus. Slow theta has been classically associated to anxiety-like behaviors. Here, we show that salicylate application can consistently generate low frequency theta in the ventral hippocampus. Tinnitus and anxiety show strong comorbidity and the increase in ventral hippocampus low frequency theta could be part of this association.


Subject(s)
Anxiety/chemically induced , Anxiety/psychology , Hippocampus/drug effects , Running/psychology , Salicylates/toxicity , Theta Rhythm/drug effects , Animals , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Running/physiology , Theta Rhythm/physiology
11.
Front Mol Neurosci ; 11: 312, 2018.
Article in English | MEDLINE | ID: mdl-30233313

ABSTRACT

The subgranular zone (SGZ) of dentate gyrus (DG) is one of the few regions in which neurogenesis is maintained throughout adulthood. It is believed that newborn neurons in this region encode temporal information about partially overlapping contextual memories. The 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a naturally occurring compound capable of inducing a powerful psychedelic state. Recently, it has been suggested that DMT analogs may be used in the treatment of mood disorders. Due to the strong link between altered neurogenesis and mood disorders, we tested whether 5-MeO-DMT is capable of increasing DG cell proliferation. We show that a single intracerebroventricular (ICV) injection of 5-MeO-DMT increases the number of Bromodeoxyuridine (BrdU+) cells in adult mice DG. Moreover, using a transgenic animal expressing tamoxifen-dependent Cre recombinase under doublecortin promoter, we found that 5 Meo-DMT treated mice had a higher number of newborn DG Granule cells (GC). We also showed that these DG GC have more complex dendritic morphology after 5-MeO-DMT. Lastly, newborn GC treated with 5-MeO-DMT, display shorter afterhyperpolarization (AHP) potentials and higher action potential (AP) threshold compared. Our findings show that 5-MeO-DMT affects neurogenesis and this effect may contribute to the known antidepressant properties of DMT-derived compounds.

12.
Front Cell Neurosci ; 12: 155, 2018.
Article in English | MEDLINE | ID: mdl-29937717

ABSTRACT

Reprogramming of somatic cells into induced pluripotent stem cells (iPS) or directly into cells from a different lineage, including neurons, has revolutionized research in regenerative medicine in recent years. Mesenchymal stem cells are good candidates for lineage reprogramming and autologous transplantation, since they can be easily isolated from accessible sources in adult humans, such as bone marrow and dental tissues. Here, we demonstrate that expression of the transcription factors (TFs) SRY (sex determining region Y)-box 2 (Sox2), Mammalian achaete-scute homolog 1 (Ascl1), or Neurogenin 2 (Neurog2) is sufficient for reprogramming human umbilical cord mesenchymal stem cells (hUCMSC) into induced neurons (iNs). Furthermore, the combination of Sox2/Ascl1 or Sox2/Neurog2 is sufficient to reprogram up to 50% of transfected hUCMSCs into iNs showing electrical properties of mature neurons and establishing synaptic contacts with co-culture primary neurons. Finally, we show evidence supporting the notion that different combinations of TFs (Sox2/Ascl1 and Sox2/Neurog2) may induce multiple and overlapping neuronal phenotypes in lineage-reprogrammed iNs, suggesting that neuronal fate is determined by a combination of signals involving the TFs used for reprogramming but also the internal state of the converted cell. Altogether, the data presented here contribute to the advancement of techniques aiming at obtaining specific neuronal phenotypes from lineage-converted human somatic cells to treat neurological disorders.

13.
J Neurosci ; 36(19): 5338-52, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27170130

ABSTRACT

UNLABELLED: During slow-wave sleep and deep anesthesia, the rat hippocampus displays a slow oscillation (SO) that follows "up-and-down" state transitions in the neocortex. There has been recent debate as to whether this local field potential (LFP) rhythm reflects internal processing or entrains with respiratory inputs. To solve this issue, here we have concomitantly recorded respiration along with hippocampal, neocortical, and olfactory bulb (OB) LFPs in rats anesthetized with urethane. During the course of anesthesia, LFPs transitioned between activity states characterized by the emergence of different oscillations. By jointly analyzing multisite LFPs and respiratory cycles, we could distinguish three types of low-frequency hippocampal oscillations: (1) SO, which coupled to neocortical up-and-down transitions; (2) theta, which phase-reversed across hippocampal layers and was largest at the fissure; and (3) a low-frequency rhythm with largest amplitude in the dentate gyrus, which coupled to respiration-entrained oscillations in OB and to respiration itself. In contrast, neither theta nor SO coupled to respiration. The hippocampal respiration-coupled rhythm and SO had frequency <1.5 Hz, whereas theta tended to be faster (>3 Hz). Tracheotomy abolished hippocampal respiration-coupled rhythm, which was restored by rhythmic delivery of air puffs into the nasal cavity. These results solve the apparent contradictions among previous studies by demonstrating that the rat hippocampus produces multiple types of low-frequency oscillations. Because they synchronize with different brain circuits, however, we postulate that each activity pattern plays a unique role in information processing. SIGNIFICANCE STATEMENT: The rat hippocampus exhibits a large-amplitude slow oscillation (<1.5 Hz) during deep sleep and anesthesia. It is currently debated whether this rhythm reflects internal processing with the neocortex or entrainment by external inputs from rhythmic nasal respiration, which has similar frequency. Here we reconcile previous studies by showing that the hippocampus can actually produce two low-frequency rhythms at nearby frequencies: one that indeed couples to respiration and another that is coupled to the neocortex. We further show that the respiration-coupled rhythm differs from theta oscillations. The results support a role for brain oscillations in connecting distant brain regions, and posit the respiratory cycle as an important reference for neuronal communication between olfactory and memory networks.


Subject(s)
Hippocampus/physiology , Respiration , Theta Rhythm , Animals , Evoked Potentials , Male , Neocortex/physiology , Olfactory Bulb/physiology , Rats , Rats, Wistar
14.
Front Neural Circuits ; 7: 120, 2013.
Article in English | MEDLINE | ID: mdl-23888129

ABSTRACT

Synchronization among neurons is thought to arise from the interplay between excitation and inhibition; however, the connectivity rules that contribute to synchronization are still unknown. We studied these issues in hippocampal CA1 microcircuits using paired patch clamp recordings and real time computing. By virtually connecting a model interneuron with two pyramidal cells (PCs), we were able to test the importance of connectivity in synchronizing pyramidal cell activity. Our results show that a circuit with a nonreciprocal connection between pyramidal cells and no feedback from PCs to the virtual interneuron produced the greatest level of synchronization and mutual information between PC spiking activity. Moreover, we investigated the role of intrinsic membrane properties contributing to synchronization where the application of a specific ion channel blocker, ZD7288 dramatically impaired PC synchronization. Additionally, background synaptic activity, in particular arising from NMDA receptors, has a large impact on the synchrony observed in the aforementioned circuit. Our results give new insights to the basic connection paradigms of microcircuits that lead to coordination and the formation of assemblies.


Subject(s)
Hippocampus/cytology , Hippocampus/physiology , Inhibitory Postsynaptic Potentials/physiology , Nerve Net/cytology , Nerve Net/physiology , Action Potentials/physiology , Animals , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Pyramidal Cells/physiology
15.
J Neurosci ; 33(4): 1535-9, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23345227

ABSTRACT

Recent reports converge to the idea that high-frequency oscillations in local field potentials (LFPs) represent multiunit activity. In particular, the amplitude of LFP activity above 100 Hz-commonly referred to as "high-gamma" or "epsilon" band-was found to correlate with firing rate. However, other studies suggest the existence of true LFP oscillations at this frequency range that are different from the well established ripple oscillations. Using multisite recordings of the hippocampus of freely moving rats, we show here that high-frequency LFP oscillations can represent either the spectral leakage of spiking activity or a genuine rhythm, depending on recording location. Both spike-leaked, spurious activity and true fast oscillations couple to theta phase; however, the two phenomena can be clearly distinguished by other key features, such as preferred coupling phase and spectral signatures. Our results argue against the idea that all high-frequency LFP activity stems from spike contamination and suggest avoiding defining brain rhythms solely based on frequency range.


Subject(s)
Action Potentials/physiology , CA1 Region, Hippocampal/physiology , Animals , Electrophysiology , Rats
16.
J Pediatr ; 87(1): 38-42, 1975 Jul.
Article in English | MEDLINE | ID: mdl-1097616

ABSTRACT

To re-evaluate the usefulness of the IgM fluorescent treponemal antibody absorption test in the diagnosis of congenital syphilis, three groups of infants were investigated. Group 1 infants showed that the test was always negative in normal neonates born to seronegative mothers. From Group 2 infants we determined the standardization of the test using commercially prepared conjugate to allow the maximum exclusion of false positive and negative results. Studies on Group 3 neonates confirmed that the standardized test was extremely successful in determining whether or not an asymptomatic infant was infected with Treponema pallidum. Finally it was shown that the standardization of the test varies with different commercially prepared conjugates. From the investigation it was concluded that the IgM FTA test, if suitably standardized, was a highly successful method for diagnosing congenital syphilis, especially in asymptomatic neonates.


Subject(s)
Immunoglobulin M/analysis , Infant, Newborn, Diseases/immunology , Syphilis Serodiagnosis/methods , Syphilis, Congenital/immunology , Treponema pallidum/immunology , Black or African American , Female , Fluorescent Antibody Technique , Humans , Immunoglobulin A/analysis , Immunoglobulin G/analysis , Infant , Infant, Newborn , Infant, Newborn, Diseases/blood , Infant, Newborn, Diseases/diagnosis , Maternal-Fetal Exchange , Pregnancy , Syphilis, Congenital/blood , Syphilis, Congenital/diagnosis , Treponema pallidum/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL