Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 38(6): 1273-1284, 2019 06.
Article in English | MEDLINE | ID: mdl-30901102

ABSTRACT

Neonicotinoids are widely used insecticides that are detectable in agricultural waterways. These insecticides are of concern due to their potential impacts on nontarget organisms. Pesticides can affect development of amphibians and suppress the immune system, which could impact disease susceptibility and tolerance. No previous studies on amphibians have examined the effects of these insecticides on differential blood cell proportions or concentrations of corticosterone (a general stress hormone). We investigated the effects of chronic exposure to 2 neonicotinoids, thiamethoxam and clothianidin, on immunometrics of wood frogs (Lithobates sylvaticus). Frogs were exposed to single, chronic treatments of 2.5 or 250 µg/L of clothianidin or thiamethoxam for 7 wk from Gosner stages 25 to 46. The juvenile frogs were then maintained for 3 wk post metamorphosis without exposure to neonicotinoids. We measured water-borne corticosterone twice: at 6 d and 8 wk after exposure in larval and juvenile frogs, respectively. We assessed differential blood cell profiles from juvenile frogs. Corticosterone was significantly lower in tadpoles exposed to 250 µg/L of thiamethoxam compared with other tadpole treatments, but no significant differences in corticosterone concentrations were found in treatments using juvenile frogs. Anemia was detected in all treatments compared with controls with the exception of tadpoles exposed to 2.5 µg/L of clothianidin. Neutrophil-to-leukocyte and neutrophil-to-lymphocyte ratios were elevated in frogs exposed to 250 µg/L of thiamethoxam. Collectively, these results indicate that chronic exposure to neonicotinoids has varied impacts on blood cell profiles and corticosterone concentrations of developing wood frogs, which are indicative of stress. Future studies should investigate whether exposure to neonicotinoids increases susceptibility to infection by parasites in both larval and adult wood frogs. Environ Toxicol Chem 2019;38:1273-1284. © 2019 Crown in the right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.


Subject(s)
Blood Cells/metabolism , Corticosterone/blood , Insecticides/toxicity , Neonicotinoids/toxicity , Ranidae/blood , Animals , Blood Cells/drug effects , Canada , Guanidines/toxicity , Larva/drug effects , Linear Models , Thiamethoxam/toxicity , Thiazoles/toxicity , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Chem ; 36(4): 1101-1109, 2017 04.
Article in English | MEDLINE | ID: mdl-28248437

ABSTRACT

Neonicotinoids are prophylactically used globally on a variety of crops, and there is concern for the potential impacts of neonicotinoids on aquatic ecosystems. The intensive use of pesticides on crops has been identified as a contributor to population declines of amphibians, but currently little is known regarding the sublethal effects of chronic neonicotinoid exposure on amphibians. The objective of the present study was to characterize the sublethal effect(s) of exposure to 3 environmentally relevant concentrations (1 µg/L, 10 µg/L, and 100 µg/L) of 2 neonicotinoids on larval wood frogs (Lithobates sylvaticus) using outdoor mesocosms. We exposed tadpoles to solutions of 2 commercial formulations containing imidacloprid and thiamethoxam, and assessed survival, growth, and development. Exposure to imidacloprid at 10 µg/L and 100 µg/L increased survival and delayed completion of metamorphosis compared with controls. Exposure to thiamethoxam did not influence amphibian responses. There was no significant effect of any treatment on body mass or size of the metamorphs. The results suggest that current usage of imidacloprid and thiamethoxam does not pose a threat to wood frogs. However, further assessment of both direct and indirect effects on subtle sublethal endpoints, and the influence of multiple interacting stressors at various life stages, is needed to fully understand the effects of neonicotinoids on amphibians. Environ Toxicol Chem 2017;36:1101-1109. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Environmental Monitoring/methods , Imidazoles/toxicity , Insecticides/toxicity , Nitro Compounds/toxicity , Oxazines/toxicity , Thiazoles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Environment , Imidazoles/analysis , Insecticides/analysis , Larva/drug effects , Metamorphosis, Biological/drug effects , Neonicotinoids , Nitro Compounds/analysis , Oxazines/analysis , Ranidae , Thiamethoxam , Thiazoles/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...