Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Front Oncol ; 13: 1150612, 2023.
Article in English | MEDLINE | ID: mdl-36959797

ABSTRACT

B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignant disorder of immature B lineage immune progenitors and is the commonest cancer in children. Despite treatment advances it remains a leading cause of death in childhood and response rates in adults remain poor. A preleukemic state predisposing children to BCP-ALL frequently arises in utero, with an incidence far higher than that of transformed leukemia, offering the potential for early intervention to prevent disease. Understanding the natural history of this disease requires an appreciation of how cell-extrinsic pressures, including microenvironment, immune surveillance and chemotherapy direct cell-intrinsic genetic and epigenetic evolution. In this review, we outline how microenvironmental factors interact with BCP-ALL at different stages of tumorigenesis and highlight emerging therapeutic avenues.

2.
iScience ; 25(12): 105622, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36465109

ABSTRACT

Several studies have documented aberrant RNA editing patterns across multiple tumors across large patient cohorts from The Cancer Genome Atlas (TCGA). However, studies on understanding the role of RNA editing in acute myeloid leukemia (AML) have been limited to smaller sample sizes. Using high throughput transcriptomic data from the TCGA, we demonstrated higher levels of editing as a predictor of poor outcome within the AML patient samples. Moreover, differential editing patterns were observed across individual AML genotypes. We also could demonstrate a negative association between the degree of editing and mRNA abundance for some transcripts, identifying the potential regulatory potential of RNA-editing in altering gene expression in AML. Further edQTL analysis suggests potential cis-regulatory mechanisms in RNA editing variation. Our work suggests a functional and regulatory role of RNA editing in the pathogenesis of AML and we extended our analysis to gain insight into the factors influencing altered levels of editing.

3.
Nat Commun ; 13(1): 7124, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411286

ABSTRACT

The ETV6-RUNX1 onco-fusion arises in utero, initiating a clinically silent pre-leukemic state associated with the development of pediatric B-acute lymphoblastic leukemia (B-ALL). We characterize the ETV6-RUNX1 regulome by integrating chromatin immunoprecipitation- and RNA-sequencing and show that ETV6-RUNX1 functions primarily through competition for RUNX1 binding sites and transcriptional repression. In pre-leukemia, this results in ETV6-RUNX1 antagonization of cell cycle regulation by RUNX1 as evidenced by mass cytometry analysis of B-lineage cells derived from ETV6-RUNX1 knock-in human pluripotent stem cells. In frank leukemia, knockdown of RUNX1 or its co-factor CBFß results in cell death suggesting sustained requirement for RUNX1 activity which is recapitulated by chemical perturbation using an allosteric CBFß-inhibitor. Strikingly, we show that RUNX1 addiction extends to other genetic subtypes of pediatric B-ALL and also adult disease. Importantly, inhibition of RUNX1 activity spares normal hematopoiesis. Our results suggest that chemical intervention in the RUNX1 program may provide a therapeutic opportunity in ALL.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Child , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factors , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , B-Lymphocytes , Gene Fusion
4.
Biol Open ; 11(9)2022 09 15.
Article in English | MEDLINE | ID: mdl-36222238

ABSTRACT

De novo mutations (DNMs) in chromodomain helicase DNA binding protein 8 (CHD8) are associated with a specific subtype of autism characterized by enlarged heads and distinct cranial features. The vast majority of these DNMs are heterozygous loss-of-function mutations with high penetrance for autism. CHD8 is a chromatin remodeler that preferentially regulates expression of genes implicated in early development of the cerebral cortex. How CHD8 haploinsufficiency alters the normal developmental trajectory of the brain is poorly understood and debated. Using long-term single-cell imaging, we show that disruption of a single copy of CHD8 in human neural precursor cells (NPCs) markedly shortens the G1 phase of the cell cycle. Consistent with faster progression of CHD8+/- NPCs through G1 and the G1/S checkpoint, we observed increased expression of E cyclins and elevated phosphorylation of Erk in these mutant cells - two central signaling pathways involved in S phase entry. Thus, CHD8 keeps proliferation of NPCs in check by lengthening G1, and mono-allelic disruption of this gene alters cell-cycle timing in a way that favors self-renewing over neurogenic cell divisions. Our findings further predict enlargement of the neural progenitor pool in CHD8+/- developing brains, providing a mechanistic basis for macrocephaly in this autism subtype.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Neural Stem Cells , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Cell Cycle/genetics , Cell Division , Chromatin/metabolism , Cyclins/genetics , Cyclins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , G1 Phase , Humans , Neural Stem Cells/metabolism , Transcription Factors/metabolism
5.
Blood Adv ; 5(20): 4112-4124, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34432872

ABSTRACT

Myelodysplastic syndrome (MDS) is a hematological malignancy characterized by blood cytopenias and predisposition to acute myeloid leukemia (AML). Therapies for MDS are lacking, particularly those that have an impact in the early stages of disease. We developed a model of MDS in zebrafish with knockout of Rps14, the primary mediator of the anemia associated with del(5q) MDS. These mutant animals display dose- and age-dependent abnormalities in hematopoiesis, culminating in bone marrow failure with dysplastic features. We used Rps14 knockdown to undertake an in vivo small-molecule screening, to identify compounds that ameliorate the MDS phenotype, and we identified imiquimod, an agonist of Toll-like receptor-7 (TLR7) and TLR8. Imiquimod alleviates anemia by promoting hematopoietic stem and progenitor cell expansion and erythroid differentiation, the mechanism of which is dependent on TLR7 ligation and Myd88. TLR7 activation in this setting paradoxically promoted an anti-inflammatory gene signature, indicating cross talk via TLR7 between proinflammatory pathways endogenous to Rps14 loss and the NF-κB pathway. Finally, in highly purified human bone marrow samples from anemic patients, imiquimod led to an increase in erythroid output from myeloerythroid progenitors and common myeloid progenitors. Our findings have both specific implications for the development of targeted therapeutics for del(5q) MDS and wider significance identifying a potential role for TLR7 ligation in modifying anemia.


Subject(s)
Myelodysplastic Syndromes , Zebrafish , Animals , Hematopoiesis , Humans , Myelodysplastic Syndromes/genetics , Signal Transduction , Toll-Like Receptor 7/genetics
6.
Hemasphere ; 5(6): e589, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34095772
7.
Br J Haematol ; 194(1): 28-43, 2021 07.
Article in English | MEDLINE | ID: mdl-33942287

ABSTRACT

T-cell ALL (T-ALL) is an aggressive malignancy of T-cell progenitors. Although survival outcomes in T-ALL have greatly improved over the past 50 years, relapsed and refractory cases remain extremely challenging to treat and those who cannot tolerate intensive treatment continue to have poor outcomes. Furthermore, T-ALL has proven a more challenging immunotherapeutic target than B-ALL. In this review we explore our expanding knowledge of the basic biology of T-ALL and how this is paving the way for repurposing established treatments and the development of novel therapeutic approaches.


Subject(s)
Antineoplastic Agents/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents, Immunological/therapeutic use , Apoptosis/drug effects , Arabinonucleosides/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cyclin-Dependent Kinases/antagonists & inhibitors , Genetic Heterogeneity , Humans , Immunotherapy , Immunotherapy, Adoptive , Janus Kinase Inhibitors/therapeutic use , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor, Notch1/antagonists & inhibitors , Receptors, Interleukin-7/antagonists & inhibitors , Salvage Therapy/methods , Signal Transduction/drug effects , Sulfonamides/therapeutic use , Therapies, Investigational/methods , Therapies, Investigational/trends , Treatment Outcome
8.
STAR Protoc ; 2(2): 100420, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33899010

ABSTRACT

In vitro differentiation of human pluripotent stem cells (hPSCs) offers a genetically tractable system to examine the physiology and pathology of human tissue development and differentiation. We have used this approach to model the earliest stages of human B lineage development and characterize potential target cells for the in utero initiation of childhood B acute lymphoblastic leukemia. Herein, we detail critical aspects of the protocol including reagent validation, controls, and examples of surface markers used for analysis and cell sorting. For complete details on the use and execution of this protocol, please refer to Boiers et al. (2018).


Subject(s)
B-Lymphocytes/cytology , Coculture Techniques/methods , Pluripotent Stem Cells/cytology , Animals , Cell Line , Cell Separation , Humans , Leukemia, Lymphoid , Mice
9.
Cancer Discov ; 10(7): 998-1017, 2020 07.
Article in English | MEDLINE | ID: mdl-32349972

ABSTRACT

Loss-of-function mutations of EZH2, the enzymatic component of PRC2, have been associated with poor outcome and chemotherapy resistance in T-cell acute lymphoblastic leukemia (T-ALL). Using isogenic T-ALL cells, with and without CRISPR/Cas9-induced EZH2-inactivating mutations, we performed a cell-based synthetic lethal drug screen. EZH2-deficient cells exhibited increased sensitivity to structurally diverse inhibitors of CHK1, an interaction that could be validated genetically. Furthermore, small-molecule inhibition of CHK1 had efficacy in delaying tumor progression in isogenic EZH2-deficient, but not EZH2 wild-type, T-ALL cells in vivo, as well as in a primary cell model of PRC2-mutant ALL. Mechanistically, EZH2 deficiency resulted in a gene-expression signature of immature T-ALL cells, marked transcriptional upregulation of MYCN, increased replication stress, and enhanced dependency on CHK1 for cell survival. Finally, we demonstrate this phenotype is mediated through derepression of a distal PRC2-regulated MYCN enhancer. In conclusion, we highlight a novel and clinically exploitable pathway in high-risk EZH2-mutated T-ALL. SIGNIFICANCE: Loss-of-function mutations of PRC2 genes are associated with chemotherapy resistance in T-ALL, yet no specific therapy for this aggressive subtype is currently clinically available. Our work demonstrates that loss of EZH2 activity leads to MYCN-driven replication stress, resulting in increased sensitivity to CHK1 inhibition, a finding with immediate clinical relevance.This article is highlighted in the In This Issue feature, p. 890.


Subject(s)
Checkpoint Kinase 1/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Cell Proliferation , Humans , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
10.
FEBS J ; 287(9): 1777-1797, 2020 05.
Article in English | MEDLINE | ID: mdl-31804757

ABSTRACT

Development of human leishmaniasis is dependent on the ability of intracellular Leishmania parasites to spread and enter macrophages. The mechanism through which free promastigotes and amastigotes bind and enter host macrophages has been previously investigated; however, little is known about intracellular trafficking and cell-to-cell spreading. In this study, the mechanism involved in the spreading of Leishmania aethiopica and Leishmania mexicana was investigated. A significant increase in phosphatidylserine (PS) exhibition, cytochrome C release, and active caspase-3 expression was detected (P < 0.05) during L. aethiopica, but not L. mexicana spreading. A decrease (P < 0.05) of protein kinase B (Akt) protein and BCL2-associated agonist of cell death (BAD) phosphorylation was also observed. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB) signaling pathway and pro-apoptotic protein protein kinase C delta (PKC-δ) were downregulated while inhibition of caspase-3 activation prevented L. aethiopica spreading. Overall suggesting that L. aethiopica induces host cell's apoptosis during spreading in a caspase-3-dependent manner. The trafficking of amastigotes within macrophages following cell-to-cell spreading differed from that of axenic parasites and involved co-localization with lysosomal-associated membrane protein 1 (LAMP-1) within 10 min postinfection. Interestingly, following infection with axenic amastigotes and promastigotes, co-localization of parasites with LAMP-1-positive structures took place at 1 and 4 h, respectively, suggesting that the membrane coat and LAMP-1 protein were derived from the donor cell. Collectively, these findings indicate that host cell apoptosis, demonstrated by PS exhibition, caspase-3 activation, cytochrome C release, downregulation of Akt, BAD phosphorylation, NF-kB activation, and independent of PKC-δ expression, is involved in L. aethiopica spreading. Moreover, L. aethiopica parasites associate with LAMP-rich structures when taken up by neighboring macrophages.


Subject(s)
Caspase 3/metabolism , Leishmania/metabolism , Lysosomal Membrane Proteins/metabolism , NF-kappa B/metabolism , Protein Kinase C-delta , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Humans , Lysosomal Membrane Proteins/chemistry , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism , THP-1 Cells
12.
Clin Med (Lond) ; 19(2): 177-184, 2019 03.
Article in English | MEDLINE | ID: mdl-30872306

ABSTRACT

Head injury is a common cause for hospital admission and additionally 250,000 UK inpatients fall during hospital admissions annually. Head injury most commonly occurs as a result of falls from standing height in older adults. Older adults are frequently frail and multi-morbid; many have indications for anticoagulation and antiplatelet agents. The haemorrhagic complications of head injury occur in up to 16% of anticoagulated patients sustaining a head injury. These patients suffer adverse outcomes from surgery as a result of medical complications. Although geriatric trauma models are evolving to meet the demand of an ageing trauma population, medical support to trauma services is commonly delivered by general physicians, many of whom lack experience and training in this field. Determining the role of surgery and interrupted anticoagulation requires careful personalised risk assessment. Appreciation of the opposing risks can be challenging; it requires an understanding of the evidence base in both surgery and medicine to rationalise decision making and inform communication. This article aims to provide an overview for the physician with clinical responsibility for patients who have sustained head injury.


Subject(s)
Craniocerebral Trauma , Geriatric Assessment , Aged , Aged, 80 and over , Frail Elderly , Frailty , Humans , Physician's Role , Practice Guidelines as Topic
13.
Cancer Res ; 78(7): 1859-1872, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29317434

ABSTRACT

Several distinct fluid flow phenomena occur in solid tumors, including intravascular blood flow and interstitial convection. Interstitial fluid pressure is often raised in solid tumors, which can limit drug delivery. To probe low-velocity flow in tumors resulting from raised interstitial fluid pressure, we developed a novel MRI technique named convection-MRI, which uses a phase-contrast acquisition with a dual-inversion vascular nulling preparation to separate intra- and extravascular flow. Here, we report the results of experiments in flow phantoms, numerical simulations, and tumor xenograft models to investigate the technical feasibility of convection-MRI. We observed a significant correlation between estimates of effective fluid pressure from convection-MRI with gold-standard, invasive measurements of interstitial fluid pressure in mouse models of human colorectal carcinoma. Our results show how convection-MRI can provide insights into the growth and responsiveness to vascular-targeting therapy in colorectal cancers.Significance: A noninvasive method for measuring low-velocity fluid flow caused by raised fluid pressure can be used to assess changes caused by therapy. Cancer Res; 78(7); 1859-72. ©2018 AACR.


Subject(s)
Colorectal Neoplasms/blood supply , Extracellular Fluid/physiology , Hydrodynamics , Magnetic Resonance Imaging/methods , Animals , Cell Line, Tumor , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Drug Delivery Systems , Humans , Mice , Mice, Nude , Models, Biological , Neovascularization, Pathologic/pathology , Phantoms, Imaging
14.
J Pest Sci (2004) ; 91(1): 17-28, 2018.
Article in English | MEDLINE | ID: mdl-29367840

ABSTRACT

We investigated the dual effects of bacterial infections and diseased cassava plants on the fitness and biology of the Bemisia tabaci infesting cassava in Africa. Isofemale B. tabaci colonies of sub-Saharan Africa 1-subgroup 3 (SSA1-SG3), infected with two secondary endosymbiotic bacteria Arsenophonus and Rickettsia (AR+) and those free of AR infections (AR-), were compared for fitness parameters on healthy and East African cassava mosaic virus-Uganda variant (EACMV-UG)-infected cassava plants. The whitefly fecundity and nymph development was not affected by bacterial infections or the infection of cassava by the virus. However, emergence of adults from nymphs was 50 and 17% higher by AR- on healthy and virus-infected plants, respectively, than AR+ flies. Development time of adults also was 10 days longer in AR+ than AR-. The whiteflies were further compared for acquisition and retention of EACMV-UG. Higher proportion of AR- acquired (91.8%) and retained (87.6%) the virus than AR+ (71.8, 61.2%, respectively). Similarly, the AR- flies retained higher quantities of virus (~ninefold more) than AR+. These results indicated that bacteria-free whiteflies were superior and better transmitters of EACMV-UG, as they had higher adult emergence, quicker life cycle and better virus retention abilities than those infected with bacteria.

15.
Dev Cell ; 44(3): 362-377.e7, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29290585

ABSTRACT

ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19-IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19-IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state.


Subject(s)
B-Lymphocytes/pathology , Core Binding Factor Alpha 2 Subunit/metabolism , Embryonic Development , Gene Expression Regulation, Leukemic , Induced Pluripotent Stem Cells/pathology , Myeloid Cells/pathology , Oncogene Proteins, Fusion/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Acute Disease , B-Lymphocytes/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Myeloid Cells/metabolism , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Pregnancy , Pregnancy Trimester, First , Receptors, Interleukin-7 , Transcriptome
16.
Neuroimage ; 182: 314-328, 2018 11 15.
Article in English | MEDLINE | ID: mdl-28774648

ABSTRACT

Mapping axon diameters within the central and peripheral nervous system could play an important role in our understanding of nerve pathways, and help diagnose and monitor an array of neurological disorders. Numerous diffusion MRI methods have been proposed for imaging axon diameters, most of which use conventional single diffusion encoding (SDE) spin echo sequences. However, a growing number of studies show that oscillating gradient spin echo (OGSE) sequences can provide additional advantages over conventional SDE sequences. Recent theoretical results suggest that this is especially the case in realistic scenarios, such as when fibres have unknown or dispersed orientation. In the present study, we adopt the ActiveAx approach to experimentally investigate the extent of these advantages by comparing the performances of SDE and trapezoidal OGSE in viable nerve tissue. We optimise SDE and OGSE ActiveAx protocols for a rat peripheral nerve tissue and test their performance using Monte Carlo simulations and a 800 mT/m gradient strength pre-clinical imaging experiment. The imaging experiment uses excised sciatic nerve from a rat's leg placed in a MRI compatible viable isolated tissue (VIT) maintenance chamber, which keeps the tissue in a viable physiological state that preserves the structural complexity of the nerve and enables lengthy scan times. We compare model estimates to histology, which we perform on the nerve post scanning. Optimisation produces a three-shell SDE and OGSE ActiveAx protocol, with the OGSE protocol consisting of one SDE sequence and two low-frequency oscillating gradient waveform sequences. Both simulation and imaging results show that the OGSE ActiveAx estimates of the axon diameter index have a higher accuracy and a higher precision compared to those from SDE. Histology estimates of the axon diameter index in our nerve tissue samples are 4-5.8 µm and these are excellently matched with the OGSE estimates 4.2-6.5 µm, while SDE overestimates at 5.2-8 µm for the same sample. We found OGSE estimates to be more precise with on average a 0.5 µm standard deviation compared to the SDE estimates which have a 2 µm standard deviation. When testing the robustness of the estimates when the number of the diffusion gradient directions reduces, we found that both OGSE and SDE estimates are affected, however OGSE is more robust to these changes than the SDE. Overall, these results suggest, quantitatively and in in vivo conditions, that low-frequency OGSE sequences may provide improved accuracy of axon diameter mapping compared to standard SDE sequences.


Subject(s)
Axons , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Sciatic Nerve/diagnostic imaging , Animals , Computer Simulation , Diffusion Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/standards , Monte Carlo Method , Neuroimaging/standards , Rats , Rats, Sprague-Dawley , Sensitivity and Specificity
18.
Parasitology ; 144(14): 1912-1921, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28737116

ABSTRACT

Leishmaniasis develops after parasites establish themselves as amastigotes inside mammalian cells and start replicating. As relatively few parasites survive the innate immune defence, intracellular amastigotes spreading towards uninfected cells is instrumental to disease progression. Nevertheless the mechanism of Leishmania dissemination remains unclear, mostly due to the lack of a reliable model of infection spreading. Here, an in vitro model representing the dissemination of Leishmania amastigotes between human macrophages has been developed. Differentiated THP-1 macrophages were infected with GFP expressing Leishmania aethiopica and Leishmania mexicana. The percentage of infected cells was enriched via camptothecin treatment to achieve 64·1 ± 3% (L. aethiopica) and 92 ± 1·2% (L. mexicana) at 72 h, compared to 35 ± 4·2% (L. aethiopica) and 36·2 ± 2·4% (L. mexicana) in untreated population. Infected cells were co-cultured with a newly differentiated population of THP-1 macrophages. Spreading was detected after 12 h of co-culture. Live cell imaging showed inter-cellular extrusion of L. aethiopica and L. mexicana to recipient cells took place independently of host cell lysis. Establishment of secondary infection from Leishmania infected cells provided an insight into the cellular phenomena of parasite movement between human macrophages. Moreover, it supports further investigation into the molecular mechanisms of parasites spreading, which forms the basis of disease development.


Subject(s)
Apoptosis , Leishmania/physiology , Leishmaniasis/parasitology , Macrophages/parasitology , Humans , Leishmania mexicana/physiology , THP-1 Cells
19.
J Drug Target ; 25(9-10): 809-817, 2017.
Article in English | MEDLINE | ID: mdl-28743200

ABSTRACT

Intracellular compartmentalisation is a significant barrier to the successful nucleocytosolic delivery of biologics. The endocytic system has been shown to be responsible for compartmentalisation, providing an entry point, and trigger(s) for the activation of drug delivery systems. Consequently, many of the technologies used to understand endocytosis have found utility within the field of drug delivery. The use of fluorescent proteins as markers denoting compartmentalisation within the endocytic system has become commonplace. Several of the limitations associated with the use of green fluorescent protein (GFP) within the context of drug delivery have been explored here by asking a series of related questions: (1) Are molecules that regulate fusion to a specific compartment (i.e. Rab- or SNARE-GFP fusions) a good choice of marker for that compartment? (2) How reliable was GFP-marker overexpression when used to define a given endocytic compartment? (3) Can glutathione-s-transferase (GST) fused in frame with GFP (GST-GFP) act as a fluid phase endocytic probe? (4) Was GFP fluorescence a robust indicator of (GFP) protein integrity? This study concluded that there are many appropriate and useful applications for GFP; however, thought and an understanding of the biological and physicochemical character of these markers are required for the generation of meaningful data.


Subject(s)
Endocytosis/physiology , Exocytosis/physiology , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/metabolism , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Chlorocebus aethiops , Protein Transport/physiology , Vero Cells
20.
Expert Opin Drug Deliv ; 14(5): 685-696, 2017 May.
Article in English | MEDLINE | ID: mdl-27548881

ABSTRACT

INTRODUCTION: The potential of gene replacement therapy has been underscored by the market authorization of alipogene tiparvovec (Glybera) and GSK2696273 (Strimvelis) in the EU and recombinant adenovirus-p53 (Gendicine) in China. Common to these systems is the use of attenuated viruses for 'drug' delivery. Whilst viral delivery systems are being developed for siRNA, their application to antisense delivery remains problematic. Non-viral delivery remains experimental, with some notable successes. However, stability and the 'PEG dilemma', balancing toxicity and limited (often liver-tropic) pharmacokinetics/oharmacodynamics, with the membrane destabilizing activity, necessary for nucleocytosolic access and transfection remain a problem. Areas covered: Here we review the use of attenuated protein toxins as a delivery vehicle for nucleic acids, their relationship to the PEG dilemma, and their biological properties with specific reference to their intracellular trafficking. Expert opinion: The possibility of using attenuated toxins as antisense and siRNA delivery systems has been demonstrated in vitro. Systems based upon attenuated anthrax toxin have been shown to have high activity (equivalent to nucleofection) and low toxicity whilst not requiring cationic 'helpers' or condensing agents, divorcing these systems from the problems associated with the PEG dilemma. It remains to be seen whether these systems can operate safely, efficiently and reproducibly, in vivo or in the clinic.


Subject(s)
Drug Delivery Systems , Nucleic Acids/administration & dosage , RNA, Small Interfering/administration & dosage , Animals , Antigens, Bacterial/administration & dosage , Bacterial Toxins/administration & dosage , Cations , Humans , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...