Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 11(1): 4754, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938913

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Commun ; 11(1): 3923, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32782264

ABSTRACT

Machine learning promises to revolutionize clinical decision making and diagnosis. In medical diagnosis a doctor aims to explain a patient's symptoms by determining the diseases causing them. However, existing machine learning approaches to diagnosis are purely associative, identifying diseases that are strongly correlated with a patients symptoms. We show that this inability to disentangle correlation from causation can result in sub-optimal or dangerous diagnoses. To overcome this, we reformulate diagnosis as a counterfactual inference task and derive counterfactual diagnostic algorithms. We compare our counterfactual algorithms to the standard associative algorithm and 44 doctors using a test set of clinical vignettes. While the associative algorithm achieves an accuracy placing in the top 48% of doctors in our cohort, our counterfactual algorithm places in the top 25% of doctors, achieving expert clinical accuracy. Our results show that causal reasoning is a vital missing ingredient for applying machine learning to medical diagnosis.


Subject(s)
Data Accuracy , Diagnosis , Machine Learning , Algorithms , Bayes Theorem , Data Collection , Decision Making , Diagnosis, Computer-Assisted , Disease , Humans , Models, Statistical
4.
Phys Rev E ; 97(6-1): 062132, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30011472

ABSTRACT

The second law of thermodynamics states that a system in contact with a heat bath can undergo a transformation if and only if its free energy decreases. However, the "if" part of this statement is only true when the effective heat bath is infinite. In this article we remove this idealization and derive corrections to the second law in the case where the bath has a finite size, or equivalently finite heat capacity. This can also be translated to processes lasting a finite time, and we show that thermodynamical reversibility is lost in this regime. We do so in full generality, without assuming any particular model for the bath; the only parameters defining the bath are its temperature and heat capacity. We find connections with second order Shannon information theory, in particular, in the case of Landauer erasure. We also consider the case of nonfluctuating work and derive finite-bath corrections to the min and max free energies employed in single-shot thermodynamics.

5.
Phys Rev Lett ; 119(8): 080503, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28952749

ABSTRACT

One of the most striking features of quantum theory is the existence of entangled states, responsible for Einstein's so called "spooky action at a distance." These states emerge from the mathematical formalism of quantum theory, but to date we do not have a clear idea of the physical principles that give rise to entanglement. Why does nature have entangled states? Would any theory superseding classical theory have entangled states, or is quantum theory special? One important feature of quantum theory is that it has a classical limit, recovering classical theory through the process of decoherence. We show that any theory with a classical limit must contain entangled states, thus establishing entanglement as an inevitable feature of any theory superseding classical theory.

6.
Nat Commun ; 7: 13511, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886177

ABSTRACT

In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.

SELECTION OF CITATIONS
SEARCH DETAIL
...