Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Clin Infect Dis ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801746

ABSTRACT

BACKGROUND: The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. The objectives of this study are to determine whether humoral and cellular responses after SARS-CoV-2 vaccination differ if initiated <4 months versus 4-12 months after cellular therapy. METHODS: We conducted a multicenter prospective observational study at 30 cancer centers in the United States. SARS-CoV-2 vaccination was administered as part of routine care. We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. RESULTS: We enrolled 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), and chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients between April 2021 and June 2022. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy immunity. CONCLUSIONS: These data support mRNA SARS-CoV-2 vaccination prior to, and reinitiation three to four months after, cellular therapies with allogeneic HCT, autologous HCT, and CAR-T cell therapy.

2.
Lancet Haematol ; 11(5): e358-e367, 2024 May.
Article in English | MEDLINE | ID: mdl-38555923

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeting CD30 are safe and have promising activity when preceded by lymphodepleting chemotherapy. We aimed to determine the safety of anti-CD30 CAR T cells as consolidation after autologous haematopoietic stem-cell transplantation (HSCT) in patients with CD30+ lymphoma at high risk of relapse. METHODS: This phase 1 dose-escalation study was performed at two sites in the USA. Patients aged 3 years and older, with classical Hodgkin lymphoma or non-Hodgkin lymphoma with CD30+ disease documented by immunohistochemistry, and a Karnofsky performance score of more than 60% planned for autologous HSCT were eligible if they were considered high risk for relapse as defined by primary refractory disease or relapse within 12 months of initial therapy or extranodal involvement at the start of pre-transplantation salvage therapy. Patients received a single infusion of CAR T cells (2 × 107 CAR T cells per m2, 1 × 108 CAR T cells per m2, or 2 × 108 CAR T cells per m2) as consolidation after trilineage haematopoietic engraftment (defined as absolute neutrophil count ≥500 cells per µL for 3 days, platelet count ≥25 × 109 platelets per L without transfusion for 5 days, and haemoglobin ≥8 g/dL without transfusion for 5 days) following carmustine, etoposide, cytarabine, and melphalan (BEAM) and HSCT. The primary endpoint was the determination of the maximum tolerated dose, which was based on the rate of dose-limiting toxicity in patients who received CAR T-cell infusion. This study is registered with ClinicalTrials.gov (NCT02663297) and enrolment is complete. FINDINGS: Between June 7, 2016, and Nov 30, 2020, 21 patients were enrolled and 18 patients (11 with Hodgkin lymphoma, six with T-cell lymphoma, one with grey zone lymphoma) were infused with anti-CD30 CAR T cells at a median of 22 days (range 16-44) after autologous HSCT. There were no dose-limiting toxicities observed, so the highest dose tested, 2 × 108 CAR T cells per m2, was determined to be the maximum tolerated dose. One patient had grade 1 cytokine release syndrome. The most common grade 3-4 adverse events were lymphopenia (two [11%] of 18) and leukopenia (two [11%] of 18). There were no treatment-related deaths. Two patients developed secondary malignancies approximately 2 years and 2·5 years following treatment (one stage 4 non-small cell lung cancer and one testicular cancer), but these were judged unrelated to treatment. At a median follow-up of 48·2 months (IQR 27·5-60·7) post-infusion, the median progression-free survival for all treated patients (n=18) was 32·3 months (95% CI 4·6 months to not estimable) and the median progression-free survival for treated patients with Hodgkin lymphoma (n=11) has not been reached. The median overall survival for all treated patients has not been reached. INTERPRETATION: Anti-CD30 CAR T-cell infusion as consolidation after BEAM and autologous HSCT is safe, with low rates of toxicity and encouraging preliminary activity in patients with Hodgkin lymphoma at high risk of relapse, highlighting the need for larger studies to confirm these findings. FUNDING: National Heart Lung and Blood Institute, University Cancer Research Fund at the Lineberger Comprehensive Cancer Center.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Ki-1 Antigen , Transplantation, Autologous , Humans , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Middle Aged , Adult , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Aged , Adolescent , Hodgkin Disease/therapy , Hodgkin Disease/immunology , Young Adult , Child , Receptors, Chimeric Antigen/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melphalan/therapeutic use , Melphalan/administration & dosage , Lymphoma, Non-Hodgkin/therapy , Lymphoma, Non-Hodgkin/immunology , Carmustine/therapeutic use , Carmustine/administration & dosage , Etoposide/therapeutic use , Etoposide/administration & dosage , Child, Preschool , Cytarabine/therapeutic use , Cytarabine/administration & dosage
3.
Transplant Cell Ther ; 30(5): 540.e1-540.e13, 2024 May.
Article in English | MEDLINE | ID: mdl-38458478

ABSTRACT

The Blood and Marrow Transplant Clinical Trials Network (BMT-CTN) was established in 2001 to conduct large multi-institutional clinical trials addressing important issues towards improving the outcomes of HCT and other cellular therapies. Trials conducted by the network investigating new advances in HCT and cellular therapy not only assess efficacy but require careful capturing and severity assessment of adverse events and toxicities. Adverse infectious events in cancer clinical trials are typically graded according to the National Cancer Institute's Common Terminology Criteria for Adverse Events (CTCAE). However, there are limitations to this framework as it relates to HCT given the associated immunodeficiency and delayed immune reconstitution. The BMT-CTN Infection Grading System is a monitoring tool developed by the BMT CTN to capture and monitor infectious complications and differs from the CTCAE by its classification of infections based on their potential impact on morbidity and mortality for HCT recipients. Here we offer a report from the BMT CTN Infectious Disease Technical Committee regarding the rationale, development, and revising of BMT-CTN Infection Grading System and future directions as it applies to future clinical trials involving HCT and cellular therapy recipients.


Subject(s)
Clinical Trials as Topic , Hematopoietic Stem Cell Transplantation , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Infections/etiology , Severity of Illness Index
4.
medRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38343800

ABSTRACT

Background: The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. Objective: To describe humoral and cellular responses after SARS-CoV-2 vaccination initiated <4 months versus 4-12 months after cellular therapy. Design: Multicenter prospective observational study. Setting: 34 centers in the United States. Participants: 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), or chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients enrolled between April 2021 and June 2022. Interventions: SARS-CoV-2 vaccination as part of routine care. Measurements: We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. Results: Anti-S IgG and neutralizing antibody responses increased with vaccination in HCT recipients irrespective of vaccine initiation timing but were unchanged in CAR-T cell recipients initiating vaccines within 4 months. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy anti-S IgG levels. Limitations: The majority of participants were adults and received mRNA vaccines. Conclusions: These data support starting mRNA SARS-CoV-2 vaccination three to four months after allogeneic HCT, autologous HCT, and CAR-T cell therapy. Funding: National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.

5.
Transplant Cell Ther ; 30(1): 114.e1-114.e16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37775070

ABSTRACT

Fungal infection (FI) after allogeneic hematopoietic cell transplantation (HCT) is associated with increased morbidity and mortality. Neutropenia, HLA mismatch, graft-versus-host disease (GVHD), and viral infections are risk factors for FI. The objectives of this Center for International Blood and Marrow Transplant Research registry study were to compare the incidence and density of FI occurring within 180 days after HCT in matched sibling (Sib) transplants with either calcineurin inhibitor (CNI)-based or post-transplantation cyclophosphamide (PTCy)-based GVHD prophylaxis and related haploidentical transplants receiving PTCy, and to examine the impact of FI by day 180 on transplantation outcomes. METHODS: Patients who underwent their first HCT between 2012 and 2017 for acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome and received a related haploidentical transplant with PTCy (HaploCy; n = 757) or a Sib transplant with PTCy (SibCy; n = 403) or CNI (SibCNI; n = 1605) were analyzed. The incidence of FI by day 180 post-HCT was calculated as cumulative incidence with death as the competing risk. The associations of FI with overall survival, transplant-related mortality, chronic GVHD, and relapse at 2 years post-HCT were examined in Cox proportional hazards regression models. Factors significantly associated with the outcome variable at a 1% level were kept in the final model. RESULTS: By day 180 post-HCT, 56 (7%) HaploCy, 24 (6%), SibCy, and 59 (4%) SibCNI recipients developed ≥1 FI (P < .001). The cumulative incidence of yeast FI was 5.2% (99% confidence interval [CI], 3.3% to 7.3%) for HaploCy, 2.2% (99% CI, .7% to 4.5%) for SibCy, and 1.9% (99% CI, 1.1% to 2.9%) for SibCNI (P = .001), and that of mold FI was 2.9% (99% CI, 1.5% to 4.7%), 3.7% (99% CI, 91.7% to 6.6%), and 1.7% (99% CI, 1.0% to 2.6%), respectively (P = .040). FI was associated with an increased risk of death, with an adjusted hazard ratio (HR) of 4.06 (99% CI, 2.2 to 7.6) for HaploCy, 4.7 (99% CI, 2.0 to 11.0) for SibCy, and 3.4 (99% CI, 1.8 to 6.4) for SibCNI compared with SibCNI without FI (P < .0001 for all). Similar associations were noted for transplantation-related mortality. FI did not impact rates of relapse or chronic GVHD. CONCLUSIONS: Rates of FI by day 180 ranged between 1.9% and 5.2% for yeast FI and from 1.7% to 3.7% for mold FI across the 3 cohorts. The use of PTCy was associated with higher rates of yeast FI only in HaploHCT and with mold FI in both HaploHCT and SibHCT. The presence of FI by day 180 was associated with increased risk for overall mortality and transplant-related mortality at 2 years regardless of donor type or PTCy use. Although rates of FI were low with PTCy, FI is associated with an increased risk of death, underscoring the need for improved management strategies.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mycoses , Humans , Incidence , Saccharomyces cerevisiae , Cyclophosphamide/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/epidemiology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Calcineurin Inhibitors/therapeutic use , Mycoses/epidemiology , Mycoses/prevention & control , Mycoses/drug therapy , Recurrence
6.
Bone Marrow Transplant ; 59(1): 76-84, 2024 01.
Article in English | MEDLINE | ID: mdl-37903992

ABSTRACT

Post-transplant cyclophosphamide (PTCy) is increasingly used to reduce graft-versus-host disease after hematopoietic cell transplantation (HCT); however, it might be associated with more infections. All patients who were ≥2 years old, receiving haploidentical or matched sibling donor (Sib) HCT for acute leukemias or myelodysplastic syndrome, and either calcineurin inhibitor (CNI)- or PTCy-based GVHD prophylaxis [Haploidentical HCT with PTCy (HaploCy), 757; Sibling with PTCy (SibCy), 403; Sibling with CNI-based (SibCNI), 1605] were included. Most bacterial infections occurred within the first 100 days; 953 patients (34.5%) had at least 1 infection and 352 patients (13%) had ≥2 infections. Patients receiving PTCy had a greater incidence of bacterial infections by day 180 [HaploCy 46%; SibCy 48%; SibCNI 35%; p < 0.001]. Compared with the SibCNI without infection cohort, 1.99-fold, 3.33-fold, 2.78-fold, and 2.53-fold increased TRM was seen for the HaploCy cohort without infection and HaploCy, SibCy, and SibCNI cohorts with infection, respectively. Bacterial infections increased mortality [HaploCy (HR1.84, 99% CI: 1.45-2.33, p < 0.0001), SibCy cohort (HR,1.68, 99% CI: 1.30-2.19, p < 0.0001), and SibCNI cohort (HR,1.76, 99% CI: 1.43-2.16, p < 0.0001). PTCy was associated with increased bacterial infections regardless of donor, and bacterial infections were associated with increased mortality irrespective of GVHD prophylaxis. Patients receiving PTCy should be monitored carefully for bacterial infections following PTCy.


Subject(s)
Bacterial Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Child, Preschool , Cyclophosphamide/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Tissue Donors , Calcineurin Inhibitors/therapeutic use , Bacterial Infections/etiology , Retrospective Studies
7.
EClinicalMedicine ; 59: 101983, 2023 May.
Article in English | MEDLINE | ID: mdl-37128256

ABSTRACT

Background: The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood. Methods: We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG; nucleocapsid protein (anti-N) IgG; neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains; and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations <4 months versus 4-12 months after HCT using a propensity-adjusted analysis. We also evaluated factors associated with high-level anti-S IgG titers (≥2403 U/mL) in logistic regression models. Findings: Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations <4 months versus 4-12 months after HCT. Anti-S IgG ≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent. Interpretation: These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms. Funding: National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.

8.
Cell ; 186(6): 1115-1126.e8, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931242

ABSTRACT

Previously, two men were cured of HIV-1 through CCR5Δ32 homozygous (CCR5Δ32/Δ32) allogeneic adult stem cell transplant. We report the first remission and possible HIV-1 cure in a mixed-race woman who received a CCR5Δ32/Δ32 haplo-cord transplant (cord blood cells combined with haploidentical stem cells from an adult) to treat acute myeloid leukemia (AML). Peripheral blood chimerism was 100% CCR5Δ32/Δ32 cord blood by week 14 post-transplant and persisted through 4.8 years of follow-up. Immune reconstitution was associated with (1) loss of detectable replication-competent HIV-1 reservoirs, (2) loss of HIV-1-specific immune responses, (3) in vitro resistance to X4 and R5 laboratory variants, including pre-transplant autologous latent reservoir isolates, and (4) 18 months of HIV-1 control with aviremia, off antiretroviral therapy, starting at 37 months post-transplant. CCR5Δ32/Δ32 haplo-cord transplant achieved remission and a possible HIV-1 cure for a person of diverse ancestry, living with HIV-1, who required a stem cell transplant for acute leukemia.


Subject(s)
Cord Blood Stem Cell Transplantation , HIV Infections , HIV-1 , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Male , Adult , Female , Humans , Fetal Blood , Leukemia, Myeloid, Acute/therapy
9.
Lancet Haematol ; 10(4): e284-e294, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36990623

ABSTRACT

Literature discussing endemic and regionally limited infections in recipients of haematopoietic stem-cell transplantation (HSCT) outside western Europe and North America is scarce. This Worldwide Network for Blood and Marrow Transplantation (WBMT) article is part one of two papers aiming to provide guidance to transplantation centres around the globe regarding infection prevention and treatment, and considerations for transplantation based on current evidence and expert opinion. These recommendations were initially formulated by a core writing team from the WBMT and subsequently underwent multiple revisions by infectious disease experts and HSCT experts. In this paper, we summarise the data and provide recommendations on several endemic and regionally limited viral and bacterial infections, many of which are listed by WHO as neglected tropical diseases, including Dengue, Zika, yellow fever, chikungunya, rabies, brucellosis, melioidosis, and leptospirosis.


Subject(s)
Bacterial Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Zika Virus Infection , Zika Virus , Humans , Bone Marrow , Hematopoietic Stem Cell Transplantation/adverse effects , Virus Diseases/epidemiology , Virus Diseases/etiology , Virus Diseases/prevention & control , Bacterial Infections/epidemiology , Bacterial Infections/etiology , Bacterial Infections/prevention & control , Europe
10.
Lancet Haematol ; 10(4): e295-e305, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36990624

ABSTRACT

There is a scarcity of data on endemic and regionally limited fungal and parasitic infections in recipients of haematopoietic stem-cell transplantation (HSCT) outside western Europe and North America. This Worldwide Network for Blood and Marrow Transplantation (WBMT) Review is one of two papers aiming to provide guidance to transplantation centres worldwide regarding prevention, diagnosis, and treatment based on the currently available evidence and expert opinion. These recommendations were created and reviewed by physicians with expertise in HSCT or infectious disease, representing several infectious disease and HSCT groups and societies. In this paper, we review the literature on several endemic and regionally limited parasitic and fungal infections, some of which are listed as neglected tropical diseases by WHO, including visceral leishmaniasis, Chagas disease, strongyloidiasis, malaria, schistosomiasis, histoplasmosis, blastomycosis, and coccidioidomycosis.


Subject(s)
Communicable Diseases , Hematopoietic Stem Cell Transplantation , Mycoses , Humans , Bone Marrow , Mycoses/epidemiology , Mycoses/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Europe
11.
Transplant Cell Ther ; 29(6): 346.e1-346.e10, 2023 06.
Article in English | MEDLINE | ID: mdl-36924931

ABSTRACT

The use of HLA-mismatched donors could enable more patients with ethnically diverse backgrounds to receive allogeneic hematopoietic cell transplantation (HCT) in the United States. However, real-world trends and outcomes following mismatched donor HCT for diverse patients remain largely undefined. We conducted this study to determine whether the use of mismatched donor platforms have increased the access to allogeneic HCT for ethnically diverse patients, particularly through the application of novel graft-versus-host disease (GVHD) prophylaxis regimens, and whether outcomes for diverse patients are comparable to those of non-Hispanic White patients. This observational cross-sectional study used real-world data from the Center for International Blood and Marrow Transplant Research (CIBMTR) registry. All patients receiving their first allogeneic HCT in the United States between 2009 and 2020 were included, with a focus on transplantations performed in 2020. Data from patients undergoing allogeneic HCT using bone marrow, peripheral blood, or cord blood from HLA-matched or mismatched related and unrelated donors were analyzed. Specifically, relative proportion of allogeneic HCT was generated as percentage of total for donor type and for patient age, disease indication, GVHD prophylaxis, and race and ethnicity. Causes of death were summarized using frequencies, and the Kaplan-Meier estimator was used for estimating overall survival. Compared to matched related donor and matched unrelated donor HCT, more ethnically diverse patients received mismatched unrelated donor, haploidentical donor, and cord blood HCT. Although matched unrelated donor remains the most common donor type, the use of haploidentical donors has increased significantly over the last 5 years. Paralleling this increase in haploidentical HCT is the increased use of post-transplantation cyclophosphamide (PTCy) as GVHD prophylaxis. Relative to previous transplantation eras, the most contemporary era is associated with the highest survival rates following allogeneic HCT irrespective of patient race and ethnicity. Nonetheless, disease relapse remains the primary cause of death for both adult and pediatric allogeneic HCT recipients by donor type and across all patient racial/ethnic groups. Ethnically diverse patients are undergoing allogeneic HCT at higher rates, largely through the use of alternative donor platforms incorporating PTCy. Maintaining access to potential life-saving allogeneic HCT using alternative donors and novel GVHD prophylaxis strategies and improving HCT outcomes, particularly disease relapse, remain urgent clinical needs.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adult , Humans , Child , United States/epidemiology , Ethnicity , Bone Marrow , Transplantation, Homologous/adverse effects , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Retrospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Cyclophosphamide/therapeutic use , Unrelated Donors , Recurrence
12.
Bone Marrow Transplant ; 58(4): 360-366, 2023 04.
Article in English | MEDLINE | ID: mdl-36543999

ABSTRACT

Clostridioides difficile infection (CDI) is common after allogeneic hematopoietic cell transplantation (alloHCT). The determination of incidence, risk factors, and impact of CDI on alloHCT outcomes is an unmet need. The study examines all patients aged 2 years and older who received first alloHCT for acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), or myelodysplastic syndrome (MDS) between 2013 and 2018 at US centers and reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) data registry. In total, 826 patients with CDI and 6723 controls from 127 centers were analyzed. The cumulative incidence of CDI by day 100 was 18.7% (99% CI: 15-22.7%) and 10.2% (99% CI: 9.2-11.1%) in pediatric and adult patients, respectively, with a median time to diagnosis at day +13. CDI was associated with inferior overall survival (OS) (p = 0.0018) and a 2.58-fold [99% CI: 1.43-4.66; p < 0.001] increase in infection-related mortality (IRM). There was a significant overlap in the onset of acute graft versus host disease (aGVHD) and CDI. IRM increased to >4 fold when CDI + aGVHD was considered. Despite advances in the management of CDI, increased IRM and decreased OS still results from CDI.


Subject(s)
Clostridium Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Humans , Child , Hematopoietic Stem Cell Transplantation/adverse effects , Incidence , Transplantation, Homologous/adverse effects , Retrospective Studies , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/complications , Leukemia, Myeloid, Acute/complications , Graft vs Host Disease/complications , Clostridium Infections/epidemiology , Clostridium Infections/etiology
13.
Haematologica ; 108(4): 1026-1038, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36519326

ABSTRACT

Acute graft-versus-host disease (aGvHD) is a life-threatening complication typically occurring within 100 days after allogeneic hematopoietic cell transplantation (allo-HCT). This hypothesis-generating, phase II, prospective, open-label, randomized study (clinicaltrials gov. Identifier: NCT03339297) compared defibrotide added to standard-of-care (SOC) GvHD prophylaxis (defibrotide prophylaxis arm) versus SOC alone (SOC arm) to prevent aGvHD post-transplant. This study estimated incidences of aGvHD and was not statistically powered to assess differences among treatment arms. Patients were randomized 1:1 to defibrotide prophylaxis arm (n=79; median age 57 years; range, 2-69 years) or SOC arm (n=73; median age 56 years; range, 2-72 years). Patient demographics in the two arms were similar except for conditioning regimen type (myeloablative: defibrotide, 76% vs. SOC, 61%) and stem cell source for allo-HCT (bone marrow: defibrotide, 34% vs. SOC, 26%). In the intent-to-treat primary endpoint analysis, the cumulative incidence of grade B-D aGvHD at day 100 post-transplant was 38.4% in the defibrotide prophylaxis arm versus 47.1% in the SOC arm (difference: -8.8%, 90% confidence interval [CI]: -22.5 to 4.9). The difference noted at day 100 became more pronounced in a subgroup analysis of patients who received antithymocyte globulin (defibrotide: 30.4%, SOC: 47.6%; difference: -17.2%; 90% CI: -41.8 to 7.5). Overall survival rates at day 180 post-transplant were similar between arms, as were the rates of serious treatment-emergent adverse events (defibrotide: 42%, SOC: 44%). While the observed differences in endpoints between the two arms were not substantial, these results suggest defibrotide prophylaxis may add a benefit to currently available SOC to prevent aGvHD following allo-HCT without adding significant toxicities.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Middle Aged , Prospective Studies , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Polydeoxyribonucleotides/therapeutic use
15.
Transplant Cell Ther ; 28(10): 696.e1-696.e7, 2022 10.
Article in English | MEDLINE | ID: mdl-35798233

ABSTRACT

Adult hematopoietic stem cell transplantation (HSCT) recipients are at a high risk of adverse outcomes after COVID-19. Although children have had better outcomes after COVID-19 compared to adults, data on risk factors and outcomes of COVID-19 among pediatric HSCT recipients are lacking. We describe outcomes of HSCT recipients who were ≤21 years of age at COVID-19 diagnosis and were reported to the Center for International Blood and Marrow Transplant Research between March 27, 2020, and May 7, 2021. The primary outcome was overall survival after COVID-19 diagnosis. We determined risk factors of COVID-19 as a secondary outcome in a subset of allogeneic HSCT recipients. A total of 167 pediatric HSCT recipients (135 allogeneic; 32 autologous HSCT recipients) were included. Median time from HSCT to COVID-19 was 15 months (interquartile range [IQR] 7-45) for allogeneic HSCT recipients and 16 months (IQR 6-59) for autologous HSCT recipients. Median follow-up from COVID-19 diagnosis was 53 days (range 1-270) and 37 days (1-179) for allogeneic and autologous HSCT recipients, respectively. Although COVID-19 was mild in 87% (n = 146/167), 10% (n = 16/167) of patients required supplemental oxygen or mechanical ventilation. The 45-day overall survival was 95% (95% confidence interval [CI], 90-99) and 90% (74-99) for allogeneic and autologous HSCT recipients, respectively. Cox regression analysis showed that patients with a hematopoietic cell transplant comorbidity index (HCT-CI) score of 1-2 were more likely to be diagnosed with COVID-19 (hazard ratio 1.95; 95% CI, 1.03-3.69, P = .042) compared to those with an HCT-CI of 0. Pediatric and early adolescent and young adult HSCT recipients with pre-HSCT comorbidities were more likely to be diagnosed with COVID-19. Overall mortality, albeit higher than the reported general population estimates, was lower when compared with previously published data focusing on adult HSCT recipients.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Adolescent , COVID-19/epidemiology , COVID-19 Testing , Child , Cohort Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Oxygen , Young Adult
16.
Transplant Cell Ther ; 28(7): 409.e1-409.e10, 2022 07.
Article in English | MEDLINE | ID: mdl-35447374

ABSTRACT

Hematopoietic cell transplantation (HCT) has been successfully used to treat many malignant and nonmalignant conditions. As supportive care, donor selection, and treatment modalities evolve, documenting HCT trends and outcomes is critical. This report from the Center for International Blood and Marrow Transplant Research (CIBMTR) provides an update on current transplantation activity and survival rates in the United States. Additional data on the use and outcomes of HCT in the adolescent and young adult (AYA) population are included. AYA patients more frequently receive peripheral blood stem cell grafts than pediatric patients, which may reflect differences in practice in pediatric versus adult treatment centers. The proportions of donor types also differ those in adult and pediatric populations. Outcomes for patients in the AYA age range are similar to those of pediatric patients for acute myelogenous leukemia but worse for acute lymphoblastic leukemia. Outcomes for both leukemias are better in AYA patients compared with older adults. Comparing the time periods 2000 to 2009 and 2010 to 2019 revealed significant improvement in overall survival across the age spectrum, but the greatest improvement in the AYA age group.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Peripheral Blood Stem Cell Transplantation , Adolescent , Aged , Child , Humans , Transplantation Conditioning , Transplantation, Homologous , United States/epidemiology , Young Adult
17.
Transplant Cell Ther ; 28(1): 48.e1-48.e10, 2022 01.
Article in English | MEDLINE | ID: mdl-34587551

ABSTRACT

The use of post-transplantation cyclophosphamide (PTCy) for graft-versus-host disease (GVHD) prophylaxis in recipients of haploidentical and fully matched transplantations is on the increase. Published studies have reported an increased incidence of cytomegalovirus (CMV) infection with the use of PTCy. Limited data exist on the incidence and outcomes of infection with non-CMV herpesviruses (NCHV) in this setting. The aim of this study was to evaluate the cumulative incidence of NCHV infections and the association of NCHV infections with transplantation-specific outcomes in recipients of haploidentical transplantation with PTCy (HaploCy), matched sibling donor transplantation with PTCy (SibCy), and matched sibling donor transplantation with calcineurin inhibitor-based prophylaxis (SibCNI). We hypothesized that, like CMV infection, HaploCy recipients of also will have a higher risk of NCHV infections. Using the Center for International Blood and Marrow Transplantation Research database, we analyzed 2765 patients (HaploCy, n = 757; SibCNI, n = 1605; SibCy, n = 403) who had undergone their first hematopoietic stem cell transplantation (HCT) between 2012 and 2017 for acute myelogenous leukemia, acute lymphoblastic leukemia, or myelodysplastic syndrome. The cumulative incidence of NCHV at 6 months post-NCT was 13.9% (99% confidence interval], 10.8% to 17.3%) in the HaploCy group, 10.7% (99% CI, 7.1% to 15%) in the SibCy group, and 5.7% (99% CI, 4.3% to 7.3%) in the Sib CNI group (P < .001). This was due primarily to a higher frequency of human herpesvirus 6 viremia reported in patients receiving PTCy. The incidence of Epstein-Barr viremia was low in all groups, and no cases of post-transplantation lymphoproliferative disorder were seen in either PTCy group. The incidence of NCHV organ disease was low in all 3 cohorts. The development of NCHV infection was associated with increased treatment-related mortality, particularly in the HaploCy group. There was no association with the development of GVHD, relapse, or disease-free survival. Patients in PTCy cohorts who did not develop NCHV infection had lower rates of cGVHD. This study demonstrates that the use of PTCy is associated with an increased risk of NCHV infection. The development of NCHV infection was associated with increased nonrelapse mortality, especially in the HaploCy group. Prospective trials should consider viral surveillance strategies in conjunction with assessment of immune reconstitution for a better understanding of the clinical relevance of viral reactivation in different HCT settings.


Subject(s)
Cytomegalovirus Infections , Herpesviridae , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Cyclophosphamide/adverse effects , Cytomegalovirus Infections/epidemiology , Humans , Myelodysplastic Syndromes/therapy , Prospective Studies
18.
Transfus Apher Sci ; 61(2): 103303, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34801430

ABSTRACT

Addition of plerixafor (P) to granulocyte colony stimulating factor (G-CSF) during peripheral blood mobilization of hematopoietic stem cells (HSC) increases the number of patients meeting collection goals prior to autologous stem cell transplant (aSCT). However, use of P is not universal among transplant centers due to cost. This study aims to compare clinical and financial impacts of using an algorithm-based P mobilization strategy versus use in all patients. This was a single center, retrospective analysis of adult patients with myeloma or amyloidosis receiving aSCT who received apheresis of their HSC between 3/1/2017 and 3/1/2019. Patients prior to 3/1/2018 were classified as receiving P "per algorithm" and those after this date were classified as "up-front" P. For the per-algorithm group, P was given for a pre-apheresis CD34+ cell count of <20 cells/µL on mobilization day 5 and patients returned on day 6 for apheresis. Of the 129 patients included, 55 received P per-algorithm and 74 received up-front P. There was a reduction in median number of apheresis days (1.5 vs 1 day, p < 0.001) and an increase in median number of CD34+ cells collected (6.6 vs 8.5 × 106 cells/kg, p < 0.001) with up-front P. Up-front P increased drug cost but reduced apheresis costs, which resulted in a net savings of $121 per patient in total mobilization costs. These findings suggest that use of up-front P for mobilization significantly reduces apheresis days and increases HSC collection yield without increasing overall cost per patient.


Subject(s)
Cyclams , Hematopoietic Stem Cell Transplantation , Heterocyclic Compounds , Multiple Myeloma , Adult , Antigens, CD34 , Benzylamines , Granulocyte Colony-Stimulating Factor , Hematopoietic Stem Cell Mobilization/methods , Heterocyclic Compounds/adverse effects , Humans , Multiple Myeloma/therapy , Retrospective Studies , Transplantation, Autologous
19.
Transplant Cell Ther ; 27(12): 993.e1-993.e8, 2021 12.
Article in English | MEDLINE | ID: mdl-34507002

ABSTRACT

The in vivo depletion of recipient and donor T lymphocytes using antithymocyte globulin (ATG; Thymoglobulin) is widely adopted in allogeneic hematopoietic stem cell transplantation (HCT) to reduce the incidence of both graft failure and graft-versus-host disease (GVHD). However, excess toxicity to donor lymphocytes may hamper immune reconstitution, compromising antitumor effects and increasing infection. Granulocyte-colony stimulating factor (G-CSF) administered early after HCT may increase ATG-mediated lymphotoxicity. This study aimed to investigate the effect of an interaction between ATG and post-transplantation granulocyte colony-stimulating factor (G-CSF) on allogeneic HCT outcomes, using the Center for International Blood and Marrow Transplant Research (CIBMTR) registry. We studied patients age ≥18 years with acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS) who received Thymoglobulin-containing preparative regimens for HLA-matched sibling/unrelated or mismatched unrelated donor HCT between 2010 and 2018. The effect of planned G-CSF that was started between pretransplantation day 3 and post-transplantation day 12 was studied in comparison with transplantations that did not include G-CSF. Cox regression models were built to identify risk factors associated with outcomes at 1 year after transplantation. A total of 874 patients met the study eligibility criteria, of whom 459 (53%) received planned G-CSF. HCT with planned G-CSF was associated with a significantly increased risk for nonrelapse mortality (NRM) (hazard ratio [HR] 2.03; P <.0001; 21% versus 12%) compared to HCT without G-CSF. The 6-month incidence of viral infection was higher with G-CSF (56% versus 47%; P = .007), with a particular increase in Epstein-Barr virus infections (19% versus 11%; P = .002). The observed higher NRM with planned G-CSF led to lower overall survival (HR, 1.52; P = .0005; 61% versus 72%). There was no difference in GVHD risk between the treatment groups. We performed 2 subgroup analyses showing that our findings held true in patients age ≥50 years and in centers where G-CSF was used in some, but not all, patients. In allogeneic peripheral blood HCT performed with Thymoglobulin for AML and MDS, G-CSF administered early post-transplantation resulted in a 2-fold increase in NRM and a 10% absolute decrement in survival. The use of planned G-CSF in the early post-transplantation period should be carefully considered on an individual patient basis, weighing any perceived benefits against these risks.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Adolescent , Antilymphocyte Serum/therapeutic use , Granulocyte Colony-Stimulating Factor/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Herpesvirus 4, Human , Humans , Leukemia, Myeloid, Acute/therapy , Middle Aged , Transplantation, Homologous
20.
Transplant Cell Ther ; 27(12): 1021.e1-1021.e5, 2021 12.
Article in English | MEDLINE | ID: mdl-34474164

ABSTRACT

Programmed death 1 (PD-1) is an integral component of acute myelogenous leukemia (AML) immune evasion, chemotherapy resistance, and disease progression. PD-1 inhibitors are being investigated as treatment for AML in combination with hypomethylating agents and cytotoxic chemotherapy with encouraging findings. Although allogeneic stem cell transplantation (alloSCT) remains the most established curative treatment for patients with relapsed and refractory AML in complete remission, there are limited data on the clinical outcomes and safety of immune checkpoint inhibitors (ICIs) prior to alloSCT in AML. In the present study, we compared clinical outcomes of 9 patients with AML receiving high-dose cytarabine followed by pembrolizumab in a phase II clinical trial (NCT02768792) prior to alloSCT versus a historical control group of 18 AML patients who underwent alloSCT without prior ICI exposure. The nonparametric Jonckheere-Terpstra test was used to test for a difference in the ordered severity categories of acute graft-versus-host disease (GVHD) within 100 days of transplantation. Time-to-event estimates for overall survival and relapse-free survival were calculated using the Kaplan-Meier method and compared using a log-rank test. One-year survival was not significantly different between the treatment groups (67% versus 78%; P = .34). 100-day mortality was 0% in the ICI group versus 17% in the control group, and there was no increase in grade III-IV acute GVHD in patients treated with pembrolizumab prior to alloSCT. No chronic GVHD was seen in patients treated with pembrolizumab prior to alloSCT and who received post-transplantation cyclophosphamide (PTCy) as part of their conditioning regimen. These findings reinforce the safety and feasibility of ICI therapy prior to alloSCT in patients with AML, and suggest that PTCy may abrogate GVHD risk and severity in patients who receive ICI prior to undergoing alloSCT for AML.


Subject(s)
Antibodies, Monoclonal, Humanized , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Antibodies, Monoclonal, Humanized/adverse effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...