Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Vaccin Immunother ; 9(10): 2165-77, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23899517

ABSTRACT

BACKGROUND: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial. METHODOLOGY/PRINCIPAL FINDINGS: The regimen was a single intramuscular injection with two non-replicating human serotype 5 adenovectors encoding CSP and AMA1, respectively. One x 10 (10) particle units of each construct were combined prior to administration. The regimen was safe and well-tolerated. Four weeks later, 18 study subjects received P. falciparum CHMI administered by mosquito bite. None were fully protected although one showed delayed onset of parasitemia. Antibody responses were low, with geometric mean CSP ELISA titer of 381 (range<50-1626) and AMA1 ELISA of 4.95 µg/mL (range 0.2-38). Summed ex vivo IFN-γ ELISpot responses to overlapping peptides were robust, with geometric mean spot forming cells/million peripheral blood mononuclear cells [sfc/m] for CSP of 273 (range 38-2550) and for AMA1 of 1303 (range 435-4594). CD4+ and CD8+ T cell IFN-γ responses to CSP were positive by flow cytometry in 25% and 56% of the research subjects, respectively, and to AMA1 in 94% and 100%, respectively. SIGNIFICANCE: In contrast to DNA/Ad, Ad alone did not protect against CHMI despite inducing broad, cell-mediated immunity, indicating that DNA priming is required for protection by the adenovirus-vectored vaccine. ClinicalTrials.gov Identifier: NCT00392015.


Subject(s)
Adenoviruses, Human/genetics , Antigens, Protozoan/immunology , Genetic Vectors , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Female , Humans , Injections, Intramuscular , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria Vaccines/genetics , Male , Membrane Proteins/genetics , Middle Aged , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Young Adult
2.
PLoS One ; 8(2): e55571, 2013.
Article in English | MEDLINE | ID: mdl-23457473

ABSTRACT

BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. TRIAL REGISTRATION: ClinicalTrials.govNCT00870987.


Subject(s)
Adenoviruses, Human/genetics , Antigens, Protozoan/genetics , Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Membrane Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Vaccines, DNA/therapeutic use , Adenoviruses, Human/immunology , Adolescent , Adult , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Humans , Immunity, Cellular , Interferon-gamma/immunology , Malaria Vaccines/adverse effects , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Membrane Proteins/immunology , Middle Aged , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Vaccines, DNA/adverse effects , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Young Adult
3.
Hum Vaccin Immunother ; 8(11): 1564-84, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23151451

ABSTRACT

When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997-1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000-2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 µg of each plasmid plus escalating doses (0, 20, 100 or 500 µg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines.


Subject(s)
Antigens, Protozoan/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Malaria Vaccines/immunology , Malaria Vaccines/therapeutic use , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Sporozoites/immunology , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use , Adult , Female , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Malaria Vaccines/administration & dosage , Male , Middle Aged , Plasmids/genetics , Vaccines, DNA/adverse effects , Young Adult
4.
PLoS One ; 6(10): e24586, 2011.
Article in English | MEDLINE | ID: mdl-22003383

ABSTRACT

BACKGROUND: Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers. METHODOLOGY/PRINCIPAL FINDINGS: The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). Group 1 (n = 6) healthy volunteers received one intramuscular injection of 2×10∧10 particle units (1×10∧10 each construct) and Group 2 (n = 6) a five-fold higher dose. Transient, mild to moderate adverse events were more pronounced with the higher dose. ELISpot responses to CSP and AMA1 peaked at 1 month, were higher in the low dose (geomean CSP = 422, AMA1 = 862 spot forming cells/million) than in the high dose (CSP = 154, p = 0.049, AMA1 = 423, p = 0.045) group and were still positive at 12 months in a number of volunteers. ELISpot depletion assays identified dependence on CD4+ or on both CD4+ and CD8+ T cells, with few responses dependent only on CD8+ T cells. Intracellular cytokine staining detected stronger CD8+ than CD4+ T cell IFN-γ responses (CSP p = 0.0001, AMA1 p = 0.003), but similar frequencies of multifunctional CD4+ and CD8+ T cells secreting two or more of IFN-γ, TNF-α or IL-2. Median fluorescence intensities were 7-10 fold higher in triple than single secreting cells. Antibody responses were low but trended higher in the high dose group and did not inhibit growth of cultured P. falciparum blood stage parasites. SIGNIFICANCE: As found in other trials, adenovectored vaccines appeared safe and well-tolerated at doses up to 1×10∧11 particle units. This is the first demonstration in humans of a malaria vaccine eliciting strong CD8+ T cell IFN-γ responses. TRIAL REGISTRATION: ClinicalTrials.govNCT00392015.


Subject(s)
Adenoviridae/genetics , Antigens, Protozoan/adverse effects , Antigens, Protozoan/immunology , Genetic Vectors/genetics , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Dose-Response Relationship, Immunologic , Female , Gene Expression , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Interferon-gamma/metabolism , Malaria Vaccines/chemistry , Malaria Vaccines/genetics , Male , Membrane Proteins/adverse effects , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/immunology , Middle Aged , Peptide Fragments/immunology , Protozoan Proteins/adverse effects , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Young Adult
5.
PLoS One ; 6(10): e25868, 2011.
Article in English | MEDLINE | ID: mdl-22003411

ABSTRACT

BACKGROUND: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. METHODOLOGY/PRINCIPAL FINDINGS: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1 x 1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected. SIGNIFICANCE: The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection. TRIAL REGISTRATION: ClinicalTrials.gov NCT00392015.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/genetics , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/adverse effects , Protozoan Proteins/immunology , Adolescent , Adult , Antigens, Protozoan/adverse effects , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Dose-Response Relationship, Immunologic , Female , Gene Expression , Humans , Malaria Vaccines/genetics , Male , Membrane Proteins/adverse effects , Membrane Proteins/genetics , Membrane Proteins/immunology , Middle Aged , Plasmodium falciparum/cytology , Protozoan Proteins/genetics , Sporozoites/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...