Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 22(4): e13796, 2023 04.
Article in English | MEDLINE | ID: mdl-36802099

ABSTRACT

Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adults. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population and gene expression level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.


Subject(s)
Interferon Type I , West Nile Fever , West Nile virus , Mice , Animals , West Nile virus/metabolism , Interferon Type I/metabolism , Antiviral Agents , Lymph Nodes , Stromal Cells
2.
bioRxiv ; 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36711838

ABSTRACT

Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adult. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population- and gene expression-level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.

3.
J Clin Invest ; 132(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36219482

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main antigen in all approved COVID-19 vaccines and is also the only target for monoclonal antibody (mAb) therapies. Immune responses to other viral antigens are generated after SARS-CoV-2 infection, but their contribution to the antiviral response remains unclear. Here, we interrogated whether nucleocapsid-specific antibodies can improve protection against SARS-CoV-2. We first immunized mice with a nucleocapsid-based vaccine and then transferred sera from these mice into naive mice, followed by challenge with SARS-CoV-2. We show that mice that received nucleocapsid-specific sera or a nucleocapsid-specific mAb exhibited enhanced control of SARS-CoV-2. Nucleocapsid-specific antibodies elicited NK-mediated, antibody-dependent cellular cytotoxicity (ADCC) against infected cells. To our knowledge, these findings provide the first demonstration in the coronavirus literature that antibody responses specific to the nucleocapsid protein can improve viral clearance, providing a rationale for the clinical evaluation of nucleocapsid-based mAb therapies to treat COVID-19.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Nucleocapsid , Animals , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Nucleocapsid/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
4.
J Virol ; 95(12)2021 05 24.
Article in English | MEDLINE | ID: mdl-33762420

ABSTRACT

Dengue virus (DENV) is the most common vector-borne viral disease, with nearly 400 million worldwide infections each year concentrated in the tropical and subtropical regions of the world. Severe dengue complications are often associated with a secondary heterotypic infection of one of the four circulating serotypes. In this scenario, humoral immune responses targeting cross-reactive, poorly neutralizing epitopes can lead to increased infectivity of susceptible cells via antibody-dependent enhancement (ADE). In this way, antibodies produced in response to infection or vaccination are capable of contributing to enhanced disease in subsequent infections. Currently, there are no available therapeutics to combat DENV disease, and there is an urgent need for a safe and efficacious vaccine. Here, we developed a nucleotide-modified mRNA vaccine encoding the membrane and envelope structural proteins from DENV serotype 1 encapsulated in lipid nanoparticles (prM/E mRNA-LNP). Vaccination of mice elicited robust antiviral immune responses comparable to viral infection, with high levels of neutralizing antibody titers and antiviral CD4+ and CD8+ T cells. Immunocompromised AG129 mice vaccinated with the prM/E mRNA-LNP vaccine were protected from a lethal DENV challenge. Vaccination with either a wild-type vaccine or a vaccine with mutations in the immunodominant fusion loop epitope elicited equivalent humoral and cell-mediated immune responses. Neutralizing antibodies elicited by the vaccine were sufficient to protect against a lethal challenge. Both vaccine constructs demonstrated serotype-specific immunity with minimal serum cross-reactivity and reduced ADE in comparison to a live DENV1 viral infection.IMPORTANCE With 400 million worldwide infections each year, dengue is the most common vector-borne viral disease. Forty percent of the world's population is at risk, with dengue experiencing consistent geographic spread over the years. With no therapeutics available and vaccines performing suboptimally, the need for an effective dengue vaccine is urgent. Here, we develop and characterize a novel mRNA vaccine encoding the dengue serotype 1 envelope and premembrane structural proteins that is delivered via a lipid nanoparticle. Our DENV1 prM/E mRNA-LNP vaccine induces neutralizing antibody and cellular immune responses in immunocompetent mice and protects an immunocompromised mouse from a lethal DENV challenge. Existing antibodies against dengue can enhance subsequent infections via antibody-dependent enhancement (ADE). Importantly our vaccine induced only serotype-specific immune responses and did not induce ADE.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Vaccines, Synthetic/immunology , Adaptive Immunity , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , Cell Line , Cross Reactions , Dengue/immunology , Dengue Vaccines/administration & dosage , Dengue Virus/classification , Dengue Virus/genetics , Immunity, Humoral , Immunization Schedule , Liposomes , Mice , Mice, Inbred C57BL , Nanoparticles , RNA, Messenger/genetics , RNA, Viral/genetics , Serogroup , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Proteins/genetics , Viral Proteins/immunology , mRNA Vaccines
6.
Bioinformatics ; 34(13): i422-i428, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29950021

ABSTRACT

Motivation: Reprogramming somatic cells into neurons holds great promise to model neuronal development and disease. The efficiency and success rate of neuronal reprogramming, however, may vary between different conversion platforms and cell types, thereby necessitating an unbiased, systematic approach to estimate neuronal identity of converted cells. Recent studies have demonstrated that long genes (>100 kb from transcription start to end) are highly enriched in neurons, which provides an opportunity to identify neurons based on the expression of these long genes. Results: We have developed a versatile R package, LONGO, to analyze gene expression based on gene length. We propose a systematic analysis of long gene expression (LGE) with a metric termed the long gene quotient (LQ) that quantifies LGE in RNA-seq or microarray data to validate neuronal identity at the single-cell and population levels. This unique feature of neurons provides an opportunity to utilize measurements of LGE in transcriptome data to quickly and easily distinguish neurons from non-neuronal cells. By combining this conceptual advancement and statistical tool in a user-friendly and interactive software package, we intend to encourage and simplify further investigation into LGE, particularly as it applies to validating and improving neuronal differentiation and reprogramming methodologies. Availability and implementation: LONGO is freely available for download at https://github.com/biohpc/longo. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Cellular Reprogramming , Gene Expression Profiling/methods , Neurons/metabolism , Software , Aged , Female , Humans , Male , Middle Aged , Neurons/physiology , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, RNA/methods , Transcriptome
7.
Nat Neurosci ; 21(3): 341-352, 2018 03.
Article in English | MEDLINE | ID: mdl-29403030

ABSTRACT

In Huntington's disease (HD), expansion of CAG codons in the huntingtin gene (HTT) leads to the aberrant formation of protein aggregates and the differential degeneration of striatal medium spiny neurons (MSNs). Modeling HD using patient-specific MSNs has been challenging, as neurons differentiated from induced pluripotent stem cells are free of aggregates and lack an overt cell death phenotype. Here we generated MSNs from HD patient fibroblasts through microRNA-based direct neuronal conversion, bypassing the induction of pluripotency and retaining age signatures of the original fibroblasts. We found that patient MSNs consistently exhibited mutant HTT (mHTT) aggregates, mHTT-dependent DNA damage, mitochondrial dysfunction and spontaneous degeneration in culture over time. We further provide evidence that erasure of age stored in starting fibroblasts or neuronal conversion of presymptomatic HD patient fibroblasts results in differential manifestation of cellular phenotypes associated with HD, highlighting the importance of age in modeling late-onset neurological disorders.


Subject(s)
Aging/pathology , Fibroblasts/pathology , Huntington Disease/pathology , Neostriatum/pathology , Neurons/pathology , DNA Damage , Excitatory Postsynaptic Potentials/genetics , Gene Expression Profiling , Humans , Huntingtin Protein/biosynthesis , Huntingtin Protein/genetics , MicroRNAs/genetics , Mitochondrial Diseases/pathology , Neurodegenerative Diseases/pathology , Oxidative Stress , Phenotype , Pluripotent Stem Cells
8.
Nat Protoc ; 10(10): 1543-55, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26379228

ABSTRACT

The ability to generate human neurons of specific subtypes of clinical importance offers experimental platforms that may be instrumental for disease modeling. We recently published a study demonstrating the use of neuronal microRNAs (miRNAs) and transcription factors to directly convert human fibroblasts to a highly enriched population of striatal medium spiny neurons (MSNs), a neuronal subpopulation that has a crucial role in motor control and harbors selective susceptibility to cell death in Huntington's disease. Here we describe a stepwise protocol for the generation of MSNs by direct neuronal conversion of human fibroblasts in 30 d. We provide descriptions of cellular behaviors during reprogramming and crucial steps involved in gene delivery, cell adhesion and culturing conditions that promote cell survival. Our protocol offers a unique approach to combine microRNAs and transcription factors to guide the neuronal conversion of human fibroblasts toward a specific neuronal subtype.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation , Fibroblasts/cytology , MicroRNAs/metabolism , Neurons/cytology , Animals , Cell Adhesion , Humans , MicroRNAs/genetics
9.
Neuron ; 84(2): 311-23, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25374357

ABSTRACT

The promise of using reprogrammed human neurons for disease modeling and regenerative medicine relies on the ability to induce patient-derived neurons with high efficiency and subtype specificity. We have previously shown that ectopic expression of brain-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), promoted direct conversion of human fibroblasts into neurons. Here we show that coexpression of miR-9/9*-124 with transcription factors enriched in the developing striatum, BCL11B (also known as CTIP2), DLX1, DLX2, and MYT1L, can guide the conversion of human postnatal and adult fibroblasts into an enriched population of neurons analogous to striatal medium spiny neurons (MSNs). When transplanted in the mouse brain, the reprogrammed human cells persisted in situ for over 6 months, exhibited membrane properties equivalent to native MSNs, and extended projections to the anatomical targets of MSNs. These findings highlight the potential of exploiting the synergism between miR-9/9*-124 and transcription factors to generate specific neuronal subtypes.


Subject(s)
Cell Differentiation/physiology , Corpus Striatum/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , MicroRNAs/metabolism , Neostriatum/cytology , Neurons/metabolism , Animals , Cells, Cultured , Humans , Mice , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...