Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Biomech (Bristol, Avon) ; 29(2): 218-22, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24342453

ABSTRACT

BACKGROUND: Previous biomechanical studies have shown that bi-cruciate retaining knee replacement does not significantly alter normal knee kinematics, however, there are no data on the influence of a combined medial and patellofemoral bi-compartimental arthroplasty. The purpose of this in vitro study was to evaluate the effect of different replacement scenarios with a modular partial knee replacement system on the amount of quadriceps force required to extend the knee during an isokinetic extension cycle. METHODS: Ten human knee specimens were tested in a kinematic knee simulator under (1) physiologic condition and after subsequent implantation of (2) a medial unicondylar and (3) a trochlear replacement. An isokinetic extension cycle of the knee with a constant extension moment of 31 Nm was simulated. The resulting quadriceps extension force was measured from 120° to full knee extension. FINDINGS: The quadriceps force curve described a typically sinusoidal characteristic before and after each replacement scenario. The isolated medial replacement resulted in a slightly, but significantly higher maximum quadriceps force (1510 N vs. 1585 N, P = 0.006) as well as the subsequent trochlear replacement showed an additional increase (1801 N, P = 0.008). However, for both replacements no significant difference to the untreated condition could be detected in mid-flexion (10-50°). INTERPRETATION: When considering a bi-compartimental replacement an increase of required maximum quadriceps force needed to extend the knee has to keep in mind. However, the close to physiological movement in mid-flexion suggests that patients with a bi-crutiate retaining arthroplasty might have an advantage in knee stability compared to total knee arthroplasty.


Subject(s)
Arthroplasty, Replacement, Knee/methods , Knee Joint/physiopathology , Muscle Strength/physiology , Quadriceps Muscle/physiopathology , Range of Motion, Articular/physiology , Aged , Biomechanical Phenomena , Female , Humans , Knee Joint/surgery , Knee Prosthesis , Male , Quadriceps Muscle/surgery
2.
Biomed Eng Online ; 9: 24, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20550669

ABSTRACT

BACKGROUND: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. METHODS: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. RESULTS: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. CONCLUSIONS: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants.


Subject(s)
Arthroplasty, Replacement, Knee/methods , Materials Testing/instrumentation , Models, Biological , Motion , Ceramics , Cobalt , Femur , Materials Testing/methods , Polyethylene , Surface Properties , Tibia
SELECTION OF CITATIONS
SEARCH DETAIL
...