Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Pediatr Neurol ; 59: 6-12, 2016 06.
Article in English | MEDLINE | ID: mdl-26995068

ABSTRACT

BACKGROUND: Pyridoxine-dependent epilepsy is a rare autosomal recessive epileptic encephalopathy caused by antiquitin (ALDH7A1) deficiency. In spite of adequate seizure control, 75% of patients suffer intellectual developmental disability. Antiquitin deficiency affects lysine catabolism resulting in accumulation of α-aminoadipic semialdehyde/pyrroline 6' carboxylate and pipecolic acid. Beside neonatal refractory epileptic encephalopathy, numerous neurological manifestations and metabolic/biochemical findings have been reported. METHODS AND RESULTS: We present a phenotypic spectrum of antiquitin deficiency based on a literature review (2006 to 2015) of reports (n = 49) describing the clinical presentation of confirmed patients (n > 200) and a further six patient vignettes. Possible presentations include perinatal asphyxia; neonatal withdrawal syndrome; sepsis; enterocolitis; hypoglycemia; neuroimaging abnormalities (corpus callosum and cerebellar abnormalities, hemorrhage, white matter lesions); biochemical abnormalities (lactic acidosis, electrolyte disturbances, neurotransmitter abnormalities); and seizure response to pyridoxine, pyridoxal-phosphate, and folinic acid dietary interventions. DISCUSSION: The phenotypic spectrum of pyridoxine-dependent epilepsy is wide, including a myriad of neurological and systemic symptoms. Its hallmark feature is refractory seizures during the first year of life. Given its amenability to treatment with lysine-lowering strategies in addition to pyridoxine supplementation for optimal seizure control and developmental outcomes, early diagnosis of pyridoxine-dependent epilepsy is essential. All infants presenting with unexplained seizures should be screened for antiquitin deficiency by determination of α-aminoadipic semialdehyde/pyrroline 6' carboxylate (in urine, plasma or cerebrospinal fluid) and ALDH7A1 molecular analysis.


Subject(s)
Epilepsy/physiopathology , Epilepsy/diagnosis , Epilepsy/genetics , Epilepsy/therapy , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...