Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Stud Health Technol Inform ; 310: 434-438, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269840

ABSTRACT

Decompressive craniectomy (DC) is a surgical procedure where a portion of the skull is removed to relieve potentially fatal brain swelling. As the swelling can take months to subside, the patient is discharged from an acute care facility to recover prior to cranioplasty (reconstruction surgery). Cranioplasty is associated with complications due to infection, seizure, haematoma and death. The interval between these surgeries is potentially a modifiable risk factor to reduce the rate of complication. We aim to allow clinicians to remotely monitor patients to facilitate an optimal pre-operative review. We have developed a platform technology encompassing a 'smart' device fitted into a skullcap to measure physiological parameters, such as changes in brain swelling, and a clinician portal that allows remote viewing of the patients' physiological data. The use of patient generated data during the transition between craniectomy and cranioplasty has the potential to significantly improve neurorehabilitation outcomes for patients.


Subject(s)
Brain Edema , Humans , Craniotomy , Critical Care , Patient Discharge , Patients
2.
Bioorg Med Chem Lett ; 30(4): 126852, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31898999

ABSTRACT

Nrf2 is a transcription factor regulating expression of the Phase II Antioxidant Response and plays an important role in neuroprotection and detoxification. Nrf2 activation is inhibited by interaction with Keap1. Covalent Keap1 inhibitors such as dimethyl fumarate (DMF) and RTA-408 are either on the market or in late stage clinical trials which implies potential benefit of Nrf2 activation. Activation of Nrf2 by disrupting Nrf2-Keap1 interaction through a non-covalent small molecule is an attractive approach with the promise of greater selectivity. However, there are no known non-covalent Nrf2 activators with acceptable pharmacokinetic properties to test the hypothesis in vivo. Based on our early reported work, using structural-based design, followed by extensive SAR exploration, we have identified a novel series of non-covalent Nrf2 activators, with sub-nanomolar binding affinity on Keap1 and single digit nanomolar activity in an astrocyte assay. A representative analog shows excellent oral PK and good Nrf2-dependent gene inductions in kidney. These results provide a peripheral in vivo tool compound to validate the biology of non-covalent activation of Nrf2.


Subject(s)
Drug Design , NF-E2-Related Factor 2/agonists , Administration, Oral , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Brain/metabolism , Half-Life , Humans , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Protein Interaction Domains and Motifs , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
3.
Sci Rep ; 7: 42054, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181536

ABSTRACT

Dimethyl fumarate (DMF) is indicated for the treatment of relapsing multiple sclerosis and may exert therapeutic effects via activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway. Following oral DMF administration, central nervous system (CNS) tissue is predominantly exposed to monomethyl fumarate (MMF), the bioactive metabolite of DMF, which can stabilize NRF2 and induce antioxidant gene expression; however, the detailed NRF2-dependent mechanisms modulated by MMF that lead to cytoprotection are unknown. Our data identify a mechanism for MMF-mediated cytoprotection in human astrocytes that functions in an OSGIN1-dependent manner, specifically via upregulation of the OSGIN1-61 kDa isoform. NRF2-dependent OSGIN1 expression induced P53 nuclear translocation following MMF administration, leading to cell-cycle inhibition and cell protection against oxidative challenge. This study provides mechanistic insight into MMF-mediated cytoprotection via NRF2, OSGIN1, and P53 in human CNS-derived cells and contributes to our understanding of how DMF may act clinically to ameliorate pathological processes in neurodegenerative disease.


Subject(s)
Astrocytes/drug effects , Astrocytes/physiology , Cytoprotection , Fumarates/metabolism , NF-E2-Related Factor 2/metabolism , Proteins/metabolism , Apoptosis Regulatory Proteins , Cells, Cultured , Humans
4.
Angew Chem Int Ed Engl ; 55(33): 9601-5, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27355874

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology, and neurology. N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) has been identified as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. Its efficacy was demonstrated in modulation of tau phosphorylation in vitro and in vivo. Whereas the kinetics of PF-367 binding in brain tissues are too fast for an effective therapeutic agent, the pharmacokinetic profile of PF-367 is ideal for discovery of radiopharmaceuticals for GSK-3 in the central nervous system. A (11) C-isotopologue of PF-367 was synthesized and preliminary PET imaging studies in non-human primates confirmed that we have overcome the two major obstacles for imaging GSK-3, namely, reasonable brain permeability and displaceable binding.


Subject(s)
Brain/drug effects , Brain/diagnostic imaging , Neuroimaging , Oxazoles/pharmacology , Positron-Emission Tomography , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , tau Proteins/antagonists & inhibitors , Brain/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Humans , Models, Molecular , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry , tau Proteins/metabolism
5.
Bioorg Med Chem Lett ; 21(9): 2631-6, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21269825

ABSTRACT

The synthesis and structure-activity relationship (SAR) of a novel series of di-substituted imidazoles, derived from modification of DAPT, are described. Subsequent optimization led to identification of a highly potent series of inhibitors that contain a ß-amine in the imidazole side-chain resulting in a robust in vivo reduction of plasma and brain Aß in guinea pigs. The therapeutic index between Aß reductions and changes in B-cell populations were studied for compound 10 h.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Amination/drug effects , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/metabolism , Animals , Biological Assay , Diamide/chemical synthesis , Diamide/chemistry , Diamide/pharmacology , Enzyme Inhibitors/chemistry , Guinea Pigs , HeLa Cells , Humans , Imidazoles/chemistry , Inhibitory Concentration 50 , Molecular Structure , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 21(9): 2637-40, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21269827

ABSTRACT

A novel series of tetralin containing amino imidazoles, derived from modification of the corresponding phenyl acetic acid derivatives is described. Replacement of the amide led to identification of a potent series of tetralin-amino imidazoles with robust central efficacy. The reduction of brain Aß in guinea pigs in the absence of changes in B-cells suggested a potential therapeutic index with respect to APP processing compared with biomarkers of notch related toxicity. Optimization of the FTOC to plasma concentrations at the brain Aß EC(50) lead to the identification of compound 14f (PF-3084014) which was selected for clinical development.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Tetrahydronaphthalenes/chemical synthesis , Tetrahydronaphthalenes/pharmacology , Valine/analogs & derivatives , Animals , Biological Assay , Drug Design , Enzyme Inhibitors/chemistry , Guinea Pigs , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Structure-Activity Relationship , Tetrahydronaphthalenes/chemistry , Valine/chemical synthesis , Valine/chemistry , Valine/pharmacology
7.
J Pharmacol Exp Ther ; 334(1): 269-77, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20363853

ABSTRACT

PF-3084014 [(S)-2-((S)-5,7-difluoro-1,2,3,4-tetrahydronaphthalen-3-ylamino)-N-(1-(2-methyl-1-(neopentylamino)propan-2-yl)-1H-imidazol-4-yl)pentanamide] is a novel gamma-secretase inhibitor that reduces amyloid-beta (Abeta) production with an in vitro IC(50) of 1.2 nM (whole-cell assay) to 6.2 nM (cell-free assay). This compound inhibits Notch-related T- and B-cell maturation in an in vitro thymocyte assay with an EC(50) of 2.1 microM. A single acute dose showed dose-dependent reduction in brain, cerebrospinal fluid (CSF), and plasma Abeta in Tg2576 mice as measured by enzyme-linked immunosorbent assay and immunoprecipitation (IP)/mass spectrometry (MS). Guinea pigs were dosed with PF-3084014 for 5 days via osmotic minipump at 0.03 to 3 mg/kg/day and exhibited dose-dependent reduction in brain, CSF, and plasma Abeta. To further characterize Abeta dynamics in brain, CSF, and plasma in relation to drug exposure and Notch-related toxicities, guinea pigs were dosed with 0.03 to 10 mg/kg PF-3084014, and tissues were collected at regular intervals from 0.75 to 30 h after dose. Brain, CSF, and plasma all exhibited dose-dependent reductions in Abeta, and the magnitude and duration of Abeta lowering exceeded those of the reductions in B-cell endpoints. Other gamma-secretase inhibitors have shown high potency at elevating Abeta in the conditioned media of whole cells and the plasma of multiple animal models and humans. Such potentiation was not observed with PF-3084014. IP/MS analysis, however, revealed dose-dependent increases in Abeta11-40 and Abeta1-43 at doses that potently inhibited Abeta1-40 and Abeta1-42. PF-3084014, like previously described gamma-secretase inhibitors, preferentially reduced Abeta1-40 relative to Abeta1-42. Potency at Abeta relative to Notch-related endpoints in vitro and in vivo suggests that a therapeutic index can be achieved with this compound.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Tetrahydronaphthalenes/pharmacology , Tetrahydronaphthalenes/pharmacokinetics , Valine/analogs & derivatives , Animals , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , Brain/drug effects , Brain/enzymology , Cell Line , Dose-Response Relationship, Drug , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Female , Guinea Pigs , Humans , Lymphocyte Count , Male , Mice , Mice, Inbred Strains , Molecular Structure , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spleen/cytology , Spleen/drug effects , Tetrahydronaphthalenes/adverse effects , Tetrahydronaphthalenes/chemistry , Tissue Distribution , Transfection , Valine/adverse effects , Valine/chemistry , Valine/pharmacokinetics , Valine/pharmacology
8.
Bioorg Med Chem Lett ; 19(19): 5703-7, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19700321

ABSTRACT

Utilizing structure-based drug design, a 4-aminoimidazole heterocyclic core was synthesized as a replacement for a 2-aminothiazole due to potential metabolically mediated toxicity. The synthetic route utilized allowed for ready synthesis of 1-substituted-4-aminoimidazoles. SAR exploration resulted in the identification of a novel cis-substituted cyclobutyl group that gave improved enzyme and cellular potency against cdk5/p25 with up to 30-fold selectivity over cdk2/cyclin E.


Subject(s)
Alzheimer Disease/drug therapy , Cyclin-Dependent Kinase 5/metabolism , Imidazoles/chemistry , Nerve Tissue Proteins/metabolism , Animals , Binding Sites , Caco-2 Cells , Crystallography, X-Ray , Cyclin E/antagonists & inhibitors , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Drug Design , Humans , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Mice , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
9.
Biochem Pharmacol ; 75(5): 1093-103, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18076866

ABSTRACT

Increasing beta-amyloid (Abeta) clearance may alter the course of Alzheimer's disease progression and attenuate amyloid plaque pathology. Insulin-like growth factor I (IGF-1) augmentation has been suggested to increase Abeta clearance by facilitating transport of Abeta out of the brain. The availability of safe agents that increase IGF-1 levels therefore makes IGF-1 elevation an attractive target for disease modifying therapy in AD. The present series of studies sought to replicate published paradigms in which peripheral IGF-1 administration lowered brain Abeta acutely, with reduction in plaque pathology after chronic treatment. Thus Abeta levels were measured in several animal models following treatments that elevated IGF-1. Administration of IGF-1 to young or old rats for up to 3 days had no effect on Abeta levels in brain, CSF, or plasma. In adult beagles, 4 days of dosing with the growth hormone secretagogue, CP-424391, doubled baseline plasma IGF-1 levels, yet failed to alter CSF or plasma Abeta. 5-day treatment of young Tg2576 mice with IGF-1 produced robust elevations of IGF-1 levels in plasma, but no effects on Abeta were detected in brain, CSF, or plasma. Finally, 11-month-old Tg2576 mice were implanted with subcutaneous minipumps delivering IGF-1 for 1 month. No significant changes in Abeta (by ELISA or Western blot), plaque pathology, or phospho-tau epitopes were detected. These results do not demonstrate acute or chronic actions of peripherally administered IGF-1 on Abeta levels or the phosphorylation state of tau and therefore do not suggest any disease-modifying benefits of IGF-1 restorative therapy for AD through these mechanisms.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/drug effects , Insulin-Like Growth Factor I/pharmacology , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Brain/metabolism , Cell Line , Dogs , Female , Humans , Insulin-Like Growth Factor I/pharmacokinetics , Male , Mice , Mice, Transgenic , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Myosin Heavy Chains/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Recombinant Proteins/blood , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology
10.
J Neurosci ; 27(12): 3090-7, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17376970

ABSTRACT

Postoperative cognitive dysfunction, confusion, and delirium are common after general anesthesia in the elderly, with symptoms persisting for months or years in some patients. Even middle-aged patients are likely to have postoperative cognitive dysfunction for months after surgery, and Alzheimer's disease (AD) patients appear to be particularly at risk of deterioration after anesthesia. Several investigators have thus examined whether general anesthesia is associated with AD, with some studies suggesting that exposure to anesthetics may increase the risk of AD. However, little is known on the biochemical consequences of anesthesia on pathogenic pathways in vivo. Here, we investigated the effect of anesthesia on tau phosphorylation and amyloid precursor protein (APP) metabolism in mouse brain. We found that, regardless of the anesthetic used, anesthesia induced rapid and massive hyperphosphorylation of tau, rapid and prolonged hypothermia, inhibition of Ser/Thr PP2A (protein phosphatase 2A), but no changes in APP metabolism or Abeta (beta-amyloid peptide) accumulation. Reestablishing normothermia during anesthesia completely rescued tau phosphorylation to normal levels. Our results indicate that changes in tau phosphorylation were not a result of anesthesia per se, but a consequence of anesthesia-induced hypothermia, which led to inhibition of phosphatase activity and subsequent hyperphosphorylation of tau. These findings call for careful monitoring of core temperature during anesthesia in laboratory animals to avoid artifactual elevation of protein phosphorylation. Furthermore, a thorough examination of the effect of anesthesia-induced hypothermia on the risk and progression of AD is warranted.


Subject(s)
Anesthesia/adverse effects , Hypothermia/metabolism , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/metabolism , tau Proteins/metabolism , Anesthetics/administration & dosage , Anesthetics/adverse effects , Animals , Hippocampus/drug effects , Hippocampus/enzymology , Hippocampus/metabolism , Hypothermia/enzymology , Male , Mice , Phosphorylation/drug effects , Protein Phosphatase 2
11.
J Pharmacol Exp Ther ; 319(2): 924-33, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16920992

ABSTRACT

LY-450139 is a gamma-secretase inhibitor shown to have efficacy in multiple cellular and animal models. Paradoxically, robust elevations of plasma amyloid-beta (Abeta) have been reported in dogs and humans after administration of subefficacious doses. The present study sought to further evaluate Abeta responses to LY-450139 in the guinea pig, a nontransgenic model that has an Abeta sequence identical to that of human. Male guinea pigs were treated with LY-450139 (0.2-60 mg/kg), and brain, cerebrospinal fluid, and plasma Abeta levels were characterized at 1, 3, 6, 9, and 14 h postdose. Low doses significantly elevated plasma Abeta levels at early time points, with return to baseline within hours. Higher doses inhibited Abeta levels in all compartments at early time points, but elevated plasma Abeta levels at later time points. To determine whether this phenomenon occurs under steady-state drug exposure, guinea pigs were implanted with subcutaneous minipumps delivering LY-450139 (0.3-30 mg/kg/day) for 5 days. Plasma Abeta was significantly inhibited at 10-30 mg/kg/day, but significantly elevated at 1 mg/kg/day. To further understand the mechanism of Abeta elevation by LY-450139, H4 cells overexpressing the Swedish mutant of amyloid-precursor protein and a mouse embryonic stem cell-derived neuronal cell line were studied. In both cellular models, elevated levels of secreted Abeta were observed at subefficacious concentrations, whereas dose-responsive inhibition was observed at higher concentrations. These results suggest that LY-450139 modulates the gamma-secretase complex, eliciting Abeta lowering at high concentrations but Abeta elevation at low concentrations.


Subject(s)
Alanine/analogs & derivatives , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/blood , Azepines/pharmacology , Enzyme Inhibitors/pharmacology , Alanine/pharmacology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Guinea Pigs , Male , Mice , Time Factors
12.
Am J Pathol ; 168(4): 1354-64, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16565508

ABSTRACT

Homeostasis of stratified epithelia, such as the epidermis of the skin, is a sophisticated process that represents a tightly controlled balance between proliferation and differentiation. Alterations of this balance are associated with common human diseases including cancer. Here, we report the cloning of a novel cDNA sequence, from mouse back skin, that is induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and codes for a hitherto unknown aspartic proteinase-like protein (Taps). Taps represents a potential AP-1 target gene because TPA-induced expression in epidermal keratinocytes critically depends on c-Fos, and co-treatment with dexamethasone, a potent inhibitor of AP-1-mediated gene regulation, resulted in impaired activation of Taps expression. Taps mRNA and protein are restricted to stratified epithelia in mouse embryos and adult tissues, implicating a crucial role for this aspartic proteinase-like gene in differentiation and homeostasis of multilayered epithelia. During chemically induced carcinogenesis, transient elevation of Taps mRNA and protein levels was detected in benign skin tumors. However, its expression is negatively associated with dedifferentiation and malignant progression in squamous cell carcinomas of the skin. Similar expression was observed in squamous skin tumors of patients, suggesting that detection of Taps levels represents a novel strategy to discriminate the progression state of squamous skin cancers.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Carcinoma, Squamous Cell/metabolism , Skin Neoplasms/metabolism , Skin/metabolism , Amino Acid Sequence , Animals , Aspartic Acid Endopeptidases/biosynthesis , Aspartic Acid Endopeptidases/genetics , Carcinoma, Squamous Cell/chemically induced , Cell Differentiation , Cell Line, Tumor , Dexamethasone/pharmacology , Epidermis/embryology , Epidermis/metabolism , Epithelium/embryology , Epithelium/metabolism , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Genes, fos , Humans , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Skin/embryology , Skin/pathology , Skin Neoplasms/chemically induced , Tetradecanoylphorbol Acetate , Transcription Factor AP-1/antagonists & inhibitors , Transcription Factor AP-1/metabolism
13.
Ann N Y Acad Sci ; 1091: 310-8, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17341624

ABSTRACT

Physiological conditions like hypoxia or hypoglycemia trigger expression of VEGF, a key regulator of angiogenesis. To elucidate the molecular mechanism underlying the VEGF regulation of hypoglycemia, we investigated the role of AP-1 transcription factor subunits c-Jun and JunB. Using c-jun(-/-) and junB(-/-) mouse embryonic fibroblasts, we demonstrate that both c-Jun and JunB are required for the hypoglycemia-mediated induction of VEGF expression. This process is independent of the master regulator of hypoxic stress HIF-1, as HIF expression and stabilization are not affected by the loss of AP-1 subunits. Analysis of signaling cascades regulating c-Jun and/or JunB activity and/or transcription upon hypoglycemia by application of specific inhibitors of protein kinase C (PKC) or extracellular signal-regulated kinase (ERK) signaling revealed that hypoglycemia-mediated induction of c-Jun is regulated via a PKCalpha-dependent signaling pathway. In contrast, JunB is activated by the MAP kinase ERK for the AP-1 subunits c-Jun and JunB to mediate VEGF regulaltion of hypoglycemia.


Subject(s)
Gene Expression Regulation/physiology , Hypoglycemia/metabolism , Proto-Oncogene Proteins c-jun/physiology , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/genetics , Animals , Cells, Cultured , Hypoglycemia/genetics , Mice , Mice, Knockout , Proto-Oncogene Proteins c-jun/deficiency , Proto-Oncogene Proteins c-jun/genetics
14.
Am J Pathol ; 167(1): 243-53, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15972968

ABSTRACT

Malignant transformation of mouse skin by tumor promoters and chemical carcinogens, such as the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), is a multistage process leading to the formation of squamous cell carcinomas. It has been shown that mice lacking the AP-1 family member c-Fos exhibit an impaired transition from benign to malignant skin tumors. Here, we demonstrate enhanced expression of the small Ras-related GTPase Rab11a after short-term TPA treatment of mouse back skin. Expression of Rab11a in vivo and in vitro critically depended on c-Fos, because TPA application to the back skin of c-Fos-deficient mice and to mouse embryonic fibroblasts did not induce Rab11a mRNA or protein expression. Moreover, dexamethasone, which is a potent inhibitor of AP-1-mediated transactivation that exhibits anti-inflammatory and anti-tumor promoting activities, inhibited TPA-induced expression of Rab11a. Within the Rab11a gene promoter, we identified a functional AP-1 binding element that exhibited elevated c-Fos binding activity after TPA treatment of keratinocytes. Enhanced expression was not restricted to chemically induced mouse skin tumors but was also found in tumor specimens derived from patients with epithelial skin tumors. These data identify Rab11a as a novel, tumor-associated c-Fos/AP-1 target and may point to an as yet unrecognized function of Rab11a in the development of skin cancer.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Skin Neoplasms/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Blotting, Northern , Blotting, Western , Carcinogens/toxicity , Cells, Cultured , Electrophoretic Mobility Shift Assay , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fluorescent Antibody Technique , Humans , In Situ Hybridization , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Mice, Transgenic , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Tetradecanoylphorbol Acetate/toxicity , rab GTP-Binding Proteins/genetics
15.
Oncogene ; 21(27): 4266-76, 2002 Jun 20.
Article in English | MEDLINE | ID: mdl-12082614

ABSTRACT

The two calgranulins S100A8 and S100A9 were found to be differentially expressed at sites of acute and chronic inflammation. Here we have employed the phorbol ester-induced multistage skin carcinogenesis protocol in mice to determine the expression of both genes in inflamed skin and in skin tumors. We show that expression is coordinately induced by the phorbol ester TPA in epithelial cells as well as infiltrating leukocytes. By comparing S100A8 and S100A9 mRNA levels in wild type and c-Fos deficient mice (c-fos(-/-)) we found that expression is negatively regulated by c-Fos/AP-1. Glucocorticoids, which exhibit potent anti-inflammatory and anti-tumor promoting activities repressed TPA-mediated S100A8 and S100A9 induction in wild type, but not in c-fos(-/-) mice, thus identifying both genes as the first examples of AP-1 target genes whose repression of TPA-induced transcription by glucocorticoids depends on c-Fos. Finally, we show that enhanced expression is not restricted to the initial TPA-induced inflammatory response but is observed at all stages of skin carcinogenesis. These data identify S100A8 and S100A9 as novel, tumor-associated genes and may point to an as yet unrecognized function of both genes in the development of epithelial skin tumors.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antigens, Differentiation/biosynthesis , Antineoplastic Agents, Hormonal/pharmacology , Calcium-Binding Proteins/biosynthesis , Carcinoma, Squamous Cell/genetics , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Papilloma/genetics , Proto-Oncogene Proteins c-fos/physiology , S100 Proteins/biosynthesis , Skin Neoplasms/genetics , Transcription Factor AP-1/physiology , Animals , Antigens, Differentiation/genetics , Calcium/physiology , Calcium-Binding Proteins/genetics , Calgranulin A , Calgranulin B , Carcinogens/pharmacology , Carcinogens/toxicity , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/metabolism , Disease Progression , Drug Eruptions/etiology , Drug Eruptions/genetics , Drug Eruptions/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Genes, fos , Keratinocytes/drug effects , Keratinocytes/metabolism , Leukocytes/drug effects , Leukocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Papilloma/chemically induced , Papilloma/metabolism , Protein Kinase C/antagonists & inhibitors , Proto-Oncogene Proteins c-fos/deficiency , S100 Proteins/genetics , Skin Neoplasms/chemically induced , Skin Neoplasms/metabolism , Specific Pathogen-Free Organisms , Tetradecanoylphorbol Acetate/pharmacology , Tetradecanoylphorbol Acetate/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...