Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: mdl-35215863

ABSTRACT

Chikungunya virus (CHIKV) presents a major burden on healthcare systems worldwide, but specific treatment remains unavailable. Attachment and fusion of CHIKV to the host cell membrane is mediated by the E1/E2 protein spikes. We used an in vitro single-particle fusion assay to study the effect of the potent, neutralizing antibody CHK-152 on CHIKV binding and fusion. We find that CHK-152 shields the virions, inhibiting interaction with the target membrane and inhibiting fusion. The analysis of the ratio of bound antibodies to epitopes implied that CHIKV fusion is a highly cooperative process. Further, dissociation of the antibody at lower pH results in a finely balanced kinetic competition between inhibition and fusion, suggesting a window of opportunity for the spike proteins to act and mediate fusion, even in the presence of the antibody.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya virus/immunology , Chikungunya virus/physiology , Virus Internalization , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Cell Line , Hydrogen-Ion Concentration , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virion/physiology , Virus Attachment
2.
J Virol ; 90(9): 4745-4756, 2016 May.
Article in English | MEDLINE | ID: mdl-26912616

ABSTRACT

UNLABELLED: Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne human pathogen causing major outbreaks in Africa, Asia, and the Americas. The cell entry pathway hijacked by CHIKV to infect a cell has been studied previously using inhibitory compounds. There has been some debate on the mechanism by which CHIKV enters the cell: several studies suggest that CHIKV enters via clathrin-mediated endocytosis, while others show that it enters independently of clathrin. Here we applied live-cell microscopy and monitored the cell entry behavior of single CHIKV particles in living cells transfected with fluorescent marker proteins. This approach allowed us to obtain detailed insight into the dynamic events that occur during CHIKV entry. We observed that almost all particles fused within 20 min after addition to the cells. Of the particles that fused, the vast majority first colocalized with clathrin. The average time from initial colocalization with clathrin to the moment of membrane fusion was 1.7 min, highlighting the rapidity of the cell entry process of CHIKV. Furthermore, these results show that the virus spends a relatively long time searching for a receptor. Membrane fusion was observed predominantly from within Rab5-positive endosomes and often occurred within 40 s after delivery to endosomes. Furthermore, we confirmed that a valine at position 226 of the E1 protein enhances the cholesterol-dependent membrane fusion properties of CHIKV. To conclude, our work confirms that CHIKV enters cells via clathrin-mediated endocytosis and shows that fusion occurs from within acidic early endosomes. IMPORTANCE: Since its reemergence in 2004, chikungunya virus (CHIKV) has spread rapidly around the world, leading to millions of infections. CHIKV often causes chikungunya fever, a self-limiting febrile illness with severe arthralgia. Currently, no vaccine or specific antiviral treatment against CHIKV is available. A potential antiviral strategy is to interfere with the cell entry process of the virus. However, conflicting results with regard to the cell entry pathway used by CHIKV have been published. Here we applied a novel technology to visualize the entry behavior of single CHIKV particles in living cells. Our results show that CHIKV cell entry is extremely rapid and occurs via clathrin-mediated endocytosis. Membrane fusion from within acidic early endosomes is observed. Furthermore, the membrane fusion capacity of CHIKV is strongly promoted by cholesterol in the target membrane. Taking these findings together, this study provides detailed insight into the cell entry process of CHIKV.


Subject(s)
Chikungunya virus/physiology , Molecular Imaging , Virus Internalization , Virus Physiological Phenomena , Animals , Cell Line , Cells, Cultured , Chikungunya Fever/virology , Chlorocebus aethiops , Cholesterol/metabolism , Clathrin/metabolism , Endocytosis , Endosomes/metabolism , Endosomes/virology , Humans , Membrane Fusion , Microscopy, Fluorescence , Molecular Imaging/methods , Staining and Labeling
3.
Cell ; 163(5): 1095-1107, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26553503

ABSTRACT

We screened a panel of mouse and human monoclonal antibodies (MAbs) against chikungunya virus and identified several with inhibitory activity against multiple alphaviruses. Passive transfer of broadly neutralizing MAbs protected mice against infection by chikungunya, Mayaro, and O'nyong'nyong alphaviruses. Using alanine-scanning mutagenesis, loss-of-function recombinant proteins and viruses, and multiple functional assays, we determined that broadly neutralizing MAbs block multiple steps in the viral lifecycle, including entry and egress, and bind to a conserved epitope on the B domain of the E2 glycoprotein. A 16 Å resolution cryo-electron microscopy structure of a Fab fragment bound to CHIKV E2 B domain provided an explanation for its neutralizing activity. Binding to the B domain was associated with repositioning of the A domain of E2 that enabled cross-linking of neighboring spikes. Our results suggest that B domain antigenic determinants could be targeted for vaccine or antibody therapeutic development against multiple alphaviruses of global concern.


Subject(s)
Alphavirus Infections/immunology , Alphavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitopes , Viral Envelope Proteins/immunology , Alphavirus/classification , Alphavirus/metabolism , Alphavirus Infections/prevention & control , Alphavirus Infections/therapy , Amino Acid Sequence , Animals , Chikungunya virus/chemistry , Chikungunya virus/immunology , Cryoelectron Microscopy , Glycoproteins/chemistry , Glycoproteins/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Mice , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Viral Envelope Proteins/chemistry , Viral Vaccines/immunology , Virus Internalization
4.
Viruses ; 7(7): 3647-74, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26198242

ABSTRACT

Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/physiology , Virus Internalization , Animals , Chikungunya Fever/metabolism , Chikungunya virus/genetics , Humans , Membrane Fusion , Receptors, Virus/metabolism , Virus Attachment
5.
J Gen Virol ; 96(8): 2122-2132, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25872739

ABSTRACT

Chikungunya virus (CHIKV) is a rapidly spreading, enveloped alphavirus causing fever, rash and debilitating polyarthritis. No specific treatment or vaccines are available to treat or prevent infection. For the rational design of vaccines and antiviral drugs, it is imperative to understand the molecular mechanisms involved in CHIKV infection. A critical step in the life cycle of CHIKV is fusion of the viral membrane with a host cell membrane. Here, we elucidate this process using ensemble-averaging liposome-virus fusion studies, in which the fusion behaviour of a large virus population is measured, and a newly developed microscopy-based single-particle assay, in which the fusion kinetics of an individual particle can be visualised. The combination of these approaches allowed us to obtain detailed insight into the kinetics, lipid dependency and pH dependency of hemifusion. We found that CHIKV fusion is strictly dependent on low pH, with a threshold of pH 6.2 and optimal fusion efficiency below pH 5.6. At this pH, CHIKV fuses rapidly with target membranes, with typically half of the fusion occurring within 2 s after acidification. Cholesterol and sphingomyelin in the target membrane were found to strongly enhance the fusion process. By analysing our single-particle data using kinetic models, we were able to deduce that the number of rate-limiting steps occurring before hemifusion equals about three. To explain these data, we propose a mechanistic model in which multiple E1 fusion trimers are involved in initiating the fusion process.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/physiology , Virion/physiology , Virus Internalization , Cell Membrane/metabolism , Cell Membrane/virology , Chikungunya Fever/metabolism , Chikungunya virus/chemistry , Chikungunya virus/genetics , Cholesterol/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Virion/chemistry , Virion/genetics
6.
PLoS One ; 9(6): e98785, 2014.
Article in English | MEDLINE | ID: mdl-24886790

ABSTRACT

BACKGROUND: Dengue Virus (DENV) is the most common mosquito-borne viral infection worldwide. Important target cells during DENV infection are macrophages, monocytes, and immature dendritic cells (imDCs). DENV-infected cells are known to secrete a large number of partially immature and fully immature particles alongside mature virions. Fully immature DENV particles are considered non-infectious, but antibodies have been shown to rescue their infectious properties. This suggests that immature DENV particles only contribute to the viral load observed in patients with a heterologous DENV re-infection. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we re-evaluated the infectious properties of fully immature particles in absence and presence of anti-DENV human serum. We show that immature DENV is infectious in cells expressing DC-SIGN. Furthermore, we demonstrate that immature dendritic cells, in contrast to macrophage-like cells, do not support antibody-dependent enhancement of immature DENV. CONCLUSIONS/SIGNIFICANCE: Our data shows that immature DENV can infect imDCs through interaction with DC-SIGN, suggesting that immature and partially immature DENV particles may contribute to dengue pathogenesis during primary infection. Furthermore, since antibodies do not further stimulate DENV infectivity on imDCs we propose that macrophages/monocytes rather than imDCs contribute to the increased viral load observed during severe heterotypic DENV re-infections.


Subject(s)
Cell Adhesion Molecules/metabolism , Dendritic Cells/virology , Dengue Virus/pathogenicity , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Cells, Cultured , Humans , Protein Binding , Virulence
7.
Nephrol Dial Transplant ; 29(3): 515-22, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23880790

ABSTRACT

Current management of end-stage renal failure is based on renal replacement therapy by dialysis or transplantation. Increased occurrence of renal failure in both native and transplanted kidneys indicates a need for novel therapies to stop or limit the progression of the disease. Acute kidney injury and proteinuria are major risk factors in the development of renal failure. In this regard, innate immunity plays an important role in the pathogenesis of renal diseases in both native and transplanted kidneys. The complement system is a major humoral part of innate defense. Next to the well-known complement activators, quite a number of the complement factors react with proteoglycans (PGs) both on cellular membranes and in the extracellular compartment. Therefore, these interactions might serve as targets for intervention. In this review, the current knowledge of interactions between PGs and complement is reviewed, and additionally the options for interference in the progression of renal disease are discussed.


Subject(s)
Complement System Proteins/metabolism , Heparin/metabolism , Heparitin Sulfate/metabolism , Kidney Failure, Chronic/metabolism , Kidney/physiopathology , Animals , Disease Progression , Humans , Kidney/immunology , Kidney/metabolism , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/prevention & control
8.
PLoS Pathog ; 9(4): e1003312, 2013.
Article in English | MEDLINE | ID: mdl-23637602

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar(-/-) ) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans.


Subject(s)
Alphavirus Infections/prevention & control , Alphavirus Infections/therapy , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/therapeutic use , Receptor, Interferon alpha-beta/genetics , Viral Structural Proteins/immunology , 3T3 Cells , Aedes , Alphavirus Infections/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Chikungunya Fever , Chikungunya virus/immunology , Chlorocebus aethiops , Mice , Mice, Inbred C57BL , Mice, Knockout , Vero Cells , Viral Envelope Proteins/immunology
9.
PLoS One ; 7(1): e29275, 2012.
Article in English | MEDLINE | ID: mdl-22238599

ABSTRACT

MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP) assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies.


Subject(s)
Binding, Competitive , Cloning, Molecular/methods , MicroRNAs/antagonists & inhibitors , MicroRNAs/chemical synthesis , RNA Interference , RNA, Antisense/chemical synthesis , RNA, Antisense/metabolism , Animals , Base Sequence , Binding, Competitive/genetics , Binding, Competitive/physiology , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Interference/physiology , RNA, Antisense/genetics , Time Factors , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...