Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(3): e0012055, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489377

ABSTRACT

INTRODUCTION: Leptospira are a group of bacteria, including pathogenic types that cause leptospirosis. In Uganda, Leptospira exposure has been reported in humans, with domesticated animals being speculated as the source. However, comparable evidence of Leptospira prevalence and circulating serovars/serogroups in animals is only documented for cattle, and dogs. Our study determined Leptospira seroprevalence, associated risk factors and serogroups circulating among slaughtered pigs, goats, and sheep in Uganda. METHODS: During an 11-month cross-sectional survey in selected slaughter facilities in three regions of Uganda, we collected blood from 926 pigs, 347 goats, and 116 sheep. The age, sex, breed, and origin of each sampled animal were noted. The samples were tested for anti-Leptospira antibodies using the microscopic agglutination test, based on a panel of 12 serovars belonging to 12 serogroups. RESULTS: Leptospira seroprevalence was 26.67% (247/926, 95%CI 23.92-29.61) among pigs, and 21.81% (101/463, 95%CI 18.29-25.80) in goats and sheep (small ruminants). L. interrogans Australis and L. kirschneri Grippotyphosa were the commonest serovars among pigs, as was L. borgpetersenii Tarassovi in small ruminants. Pigs sourced from the Eastern (Odds Ratio [OR] = 2.82, 95%CI 1.84-4.30) and Northern (OR = 3.56, 95%CI 2.52-5.02) regions were more likely to be seropositive, compared to those from the Central region. For small ruminants, being female (OR 2.74, 95% CI 1.69-4.57) and adult (OR 4.47, 95% CI 1.57-18.80) was significantly more associated with Leptospira seropositivity. Conclusion/significance: Detection of a moderate seroprevalence, and several Leptospira serogroups among pigs, sheep, and goats from all regions of Uganda, supports existing reports in cattle and dogs, and implies widespread Leptospira exposure in domestic animals in Uganda. These findings may inform future programs for the control of leptospirosis in livestock in Uganda.


Subject(s)
Leptospira , Leptospirosis , Animals , Female , Male , Animals, Domestic , Antibodies, Bacterial , Cross-Sectional Studies , Goats , Leptospirosis/epidemiology , Leptospirosis/veterinary , Leptospirosis/microbiology , Ruminants , Seroepidemiologic Studies , Sheep , Swine , Uganda/epidemiology
2.
J Health Monit ; 8(Suppl 3): 78-92, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37342431

ABSTRACT

Background: Temperature, precipitation, and humidity are important factors that can influence the spread, reproduction, and survival of pathogens. Climate change affects these factors, resulting in higher air and water temperatures, increased precipitation, or water scarcity. Climate change may thus have an increasing impact on many infectious diseases. Methods: The present review considers those foodborne pathogens and toxins in animal and plant foods that are most relevant in Germany, on the basis of a selective literature review: the bacterial pathogens of the genera Salmonella, Campylobacter and Vibrio, parasites of the genera Cryptosporidium and Giardia, and marine biotoxins. Results: As climate change continues to progress, all infections and intoxications discussed here can be expected to increase in Germany. Conclusions: The expected increase in foodborne infections and intoxications presents a growing public health risk in Germany.

3.
Microorganisms ; 10(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35456800

ABSTRACT

Spillover of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) to North American white-tailed deer (Odocoileus virginianus) has been documented. However, it is unclear if this is a phenomenon specific to North American deer or is a broader problem. We evaluated pre and pandemic exposure of German and Austrian deer species using a SARS-CoV-2 pseudoneutralization assay. In stark contrast to North American white-tailed deer, we found no evidence of SARS-CoV-2 exposure.

4.
Animals (Basel) ; 12(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35405877

ABSTRACT

Wildlife may host pathogens and chemicals of veterinary and public health relevance, as well as pathogens with significant economic relevance for domestic livestock. In conducting research on the occurrence and distribution of these agents in wildlife, a major challenge is the acquisition of a sufficient number of samples coupled with efficient use of manpower and time. The aim of this article is to present the methodology and output of a sampling approach for game animals, which was implemented from 2017/18 to 2020/21 at drive hunts in Brandenburg, Germany. The central element was a framework agreement with the BImA, whereby federal forest officials and other hunters collected most of the samples during field dressing. Further samples of game carcasses were obtained by scientists during subsequent gathering at a collection point. Altogether, 3185 samples from 938 wild ungulates of four species were obtained for various studies analysing-in this case-food-borne agents in game animals. Sampling was representative and reflected the proportional distribution of ungulate species hunted in Brandenburg. Hunting district and hunting season strongly influenced hunting bag and hence sampling success. This sampling approach was demonstrated to be a suitable basis for monitoring programs, that can be adapted to other regions.

5.
Microorganisms ; 9(8)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34442742

ABSTRACT

The importance of game as a source of Toxoplasma gondii (T. gondii) infection in humans is largely unknown. New data on the presence of T. gondii in game hunted in the Federal State of Brandenburg, Germany, were obtained by direct and indirect detection (ELISA). DNA extracted either directly (5 g heart or foreleg muscle, DE) or after acid pepsin digestion (50 g heart, PD) or enriched by magnetic capture (50 g heart, MC) was examined by real-time PCR (qPCR). ELISA revealed seroprevalences of 20% in wild boar (Sus scrofa), 11% in roe deer (Capreolus capreolus) and 6% in red deer (Cervus elaphus). T. gondii DNA was detected by at least one direct detection method in 12% of wild boar, 6% of roe deer, 2% of fallow deer (Dama dama) and 2% of red deer. In both, positive wild boar and roe deer, T. gondii type II specific alleles were the most prevalent, as assessed by PCR-restriction fragment length polymorphism. The highest proportion of positive animals was detected by MC qPCR, followed by PD qPCR with a similar proportion of positive findings. Investigation of 50 g of heart muscle revealed a significantly higher proportion of positive qPCR results than analysis of 5 g (p = 0.048). An association between seropositivity and direct detection was evident in wild boar and roe deer (p < 0.001). Infectivity of T. gondii DNA-positive samples was confirmed by bioassay (4/4), providing evidence that game could represent a relevant source of viable T. gondii posing a risk for human infection.

6.
Vector Borne Zoonotic Dis ; 17(10): 720-729, 2017 10.
Article in English | MEDLINE | ID: mdl-28714801

ABSTRACT

The broad objective of this study was to increase our knowledge of Muleshoe virus and other hantaviruses associated with cricetid rodents in Texas. Anti-hantavirus antibody was found in 38 (3.2%) of 1171 neotomine rodents and 6 (1.8%) of 332 sigmodontine rodents from 10 Texas counties; hantaviral RNA was detected in 23 (71.9%) of 32 antibody-positive rodents. Analyses of nucleocapsid protein gene sequences indicated Muleshoe virus infection in four hispid cotton rats (Sigmodon hispidus) from northern Texas; Bayou virus, three Texas marsh oryzomys (Oryzomys texensis) from the Gulf Coast; Limestone Canyon virus, five brush mice (Peromyscus boylii) from western Texas; and Sin Nombre virus-five Texas mice (P. attwateri), one Lacey's white-ankled deer mouse (P. laceianus), four white-footed mice (P. leucopus), and one fulvous harvest mouse (Reithrodontomys fulvescens) from northern, central, or southern Texas. The results of this study together with the results of a previous study revealed that Muleshoe virus, perhaps in association with S. hispidus, is distributed across northern Texas. Finally, the results of Bayesian analyses of glycoprotein precursor (GPC) gene sequences and pairwise comparisons of complete GPC (amino acid) sequences strengthened support for the notion that Muleshoe virus is distinct from Black Creek Canal virus, Bayou virus, and all other species included in the Bunyaviridae, genus Hantavirus.


Subject(s)
Hantavirus Infections/veterinary , Orthohantavirus/isolation & purification , Rodent Diseases/virology , Sigmodontinae/virology , Animals , Antibodies, Viral/blood , Gene Expression Regulation, Viral , Orthohantavirus/genetics , Hantavirus Infections/epidemiology , Hantavirus Infections/virology , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Phylogeny , RNA, Viral/genetics , Rodent Diseases/blood , Rodent Diseases/epidemiology , Texas/epidemiology , Zoonoses
7.
Vector Borne Zoonotic Dis ; 10(6): 613-20, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20687859

ABSTRACT

Hantavirus HTN.007 was originally isolated from a small-eared pygmy rice rat (Oligoryzomys microtis) captured in northeastern Peru. The results of analyses of nucleotide and amino acid sequence data in this study indicated that HTN.007 is a strain of Rio Mamoré virus (RIOMV) which is enzootic in small-eared pygmy rice rat populations in Bolivia. As such, the results of this study extend our knowledge of the geographical range of RIOMV and support the notion that the small-eared pygmy rice rat is the principal host of RIOMV.


Subject(s)
Orthohantavirus/classification , Orthohantavirus/physiology , Sigmodontinae/virology , Animals , Capsid Proteins/genetics , Gene Expression Regulation, Viral , Hantavirus Infections/epidemiology , Hantavirus Infections/veterinary , Hantavirus Infections/virology , Host-Pathogen Interactions , Peru/epidemiology , Phylogeny , Phylogeography , Rodent Diseases/epidemiology , Rodent Diseases/virology , Viral Core Proteins/genetics
8.
Vector Borne Zoonotic Dis ; 10(6): 605-11, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20055578

ABSTRACT

Strains of Caño Delgadito virus (CADV) and Maporal virus (MAPV) were isolated from 25 (8.9%) of the 280 rodents captured on farms in 1997 in western Venezuela. The results of analyses of laboratory and zoographic data indicated that Alston's cotton rat (Sigmodon alstoni) is the principal host of CADV, horizontal virus transmission is the dominant mode of CADV transmission in Alston's cotton rat in nature, a pygmy rice rat (Oligoryzomys sp.) is the principal host of MAPV, and the natural host relationships of CADV and MAPV are highly specific.


Subject(s)
Orthohantavirus/isolation & purification , Rodentia/virology , Animals , Female , Orthohantavirus/physiology , Hantavirus Infections/epidemiology , Hantavirus Infections/veterinary , Hantavirus Infections/virology , Host-Pathogen Interactions , Male , Species Specificity , Venezuela/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...