Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 890: 173670, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33098831

ABSTRACT

Potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65) is a potent inhibitor of the uridine phosphorylase 1 (UPP1) enzyme. Its non-ionized analog has already demonstrated biological properties by reducing adverse effects caused by the chemotherapeutic 5-fluorouracil (5-FU). In addition, it has been demonstrated that uridine inhibits inflammation and fibrosis in bleomycin lung injury, decreasing collagen production. The purpose of this study was to investigate the in vitro and in vivo effects of CPBMF65 on activated hepatic stellate cells (HSC) and on carbon tetrachloride-induced liver fibrosis in mice. After incubation with CPBMF65, decreased cell proliferation and phenotype reversion were observed in vitro. In addition, CPBMF65 promoted a protective effect on tetrachloride-induced liver fibrosis in mice, demonstrated by its antifibrotic and anti-inflammatory actions. The results of the present study indicate that the UPP1 inhibitor (CPBMF65) may have potential as a novel therapeutic agent for the treatment of liver fibrosis.


Subject(s)
Enzyme Inhibitors/therapeutic use , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Uridine Phosphorylase/antagonists & inhibitors , Animals , Carbon Tetrachloride/toxicity , Cell Line, Transformed , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hepatic Stellate Cells/enzymology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/enzymology , Male , Mice , Mice, Inbred BALB C , Random Allocation , Uridine Phosphorylase/metabolism
2.
Regul Toxicol Pharmacol ; 104: 98-107, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30878574

ABSTRACT

INTRODUCTION: Manganese (Mn) is an essential element required for several biological systems. However, it is toxic in excessive accumulation. The toxic effects following Mn overexposure is well known in the CNS but other studies evaluating other target tissues remain scarce. OBJECTIVE: This study aimed to investigate sex-related differences in oxidative stress, metabolic parameters and Mn deposition in peripheral organs of Wistar rats exposed to subacute model of intoxication. METHODS: Male and female adult Wistar rats received 6 or 15 mg/kg of MnCl2, intraperitoneally, 5 days a week, for 4 consecutive weeks to mimic subacute intoxication. Control group received sterile saline 0,9% following the same protocol. After this period, the metal accumulation, oxidative stress, mitochondrial activity and histological parameters in cardiac muscle, kidney, lungs and liver were analysed. RESULTS: Increased Mn concentrations were found in all organs, especially kidneys. The cardiac muscle analysis revealed increased lipid peroxidation and decreasing of GSH levels in both doses of Mn in male and female rats. The increase of lipid peroxidation in liver was more evident in the male group, and there was a significant decrease of antioxidant capacity in males' kidney. Nevertheless, there was an increase of mitochondrial complex I activity in kidney of females and increase of mitochondrial complex II activity in male group. Histological analysis revealed morphological changes in hepatic and pulmonary tissue. CONCLUSION: Taken together, our results showed that subacute Mn exposure lead to significant metabolic, biochemical alterations especially in kidney and liver. Nevertheless, despite Mn deposition was virtually the same in the peripheral organs of male and female rats, it promotes different toxic effects between sexes.


Subject(s)
Heart/drug effects , Kidney/drug effects , Liver/drug effects , Lung/drug effects , Manganese/pharmacokinetics , Manganese/toxicity , Sex Characteristics , Animals , Dose-Response Relationship, Drug , Female , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Male , Manganese/administration & dosage , Manganese/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...