Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 8: 11, 2007 Jan 09.
Article in English | MEDLINE | ID: mdl-17212827

ABSTRACT

BACKGROUND: Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. RESULTS: We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. CONCLUSION: By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.


Subject(s)
Chromosome Mapping , Microsatellite Repeats , Mutation , Zebrafish/embryology , Zebrafish/genetics , Animals , Female , Genome , Male , Mutagenesis , Phenotype
2.
Nature ; 440(7084): 631-6, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16429126

ABSTRACT

Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.


Subject(s)
Proteome/metabolism , Proteomics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Genome, Fungal , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Open Reading Frames/genetics , Phenotype , Proteome/chemistry , Proteome/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
3.
Development ; 133(4): 725-35, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16436624

ABSTRACT

Some of the earliest axon pathways to form in the vertebrate forebrain are established as commissural and retinal axons cross the midline of the diencephalon and telencephalon. To better understand axon guidance in the forebrain, we characterized the zebrafish belladonna (bel) mutation, which disrupts commissural and retinal axon guidance in the forebrain. Using a positional cloning strategy, we determined that the bel locus encodes zebrafish Lhx2, a lim-homeodomain transcription factor expressed in the brain, eye and fin buds. We show that bel(Ihx2) function is required for patterning in the ventral forebrain and eye, and that loss of bel function leads to alterations in regulatory gene expression, perturbations in axon guidance factors, and the absence of an optic chiasm and forebrain commissures. Our analysis reveals new roles for Ihx2 in midline axon guidance, forebrain patterning and eye morphogenesis.


Subject(s)
Axons/physiology , Body Patterning , Eye/embryology , Prosencephalon/embryology , Zebrafish Proteins/physiology , Zebrafish/embryology , Amino Acid Sequence , Animals , Cell Proliferation , Diencephalon/embryology , Diencephalon/metabolism , Eye/cytology , Fibroblast Growth Factors/metabolism , LIM-Homeodomain Proteins , Molecular Sequence Data , Morphogenesis , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neuroglia/physiology , Signal Transduction , Telencephalon/embryology , Telencephalon/metabolism , Transcription Factors , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
4.
Invest Ophthalmol Vis Sci ; 46(1): 137-42, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15623766

ABSTRACT

PURPOSE: To characterize the quantitative properties of the optokinetic response (OKR) in zebrafish larvae as a tool to test visual performance in genetically modified larvae. METHODS: Horizontal OKR was triggered in 5-day-old zebrafish larvae by stimulation with projected computer-generated gratings of varying contrast, angular velocity, temporal and spatial frequency, and brightness. Eye movements were analyzed by a custom-made eye tracker based on image analysis. RESULTS: The gain of the OKR slow phase was dependent on angular velocity, spatial frequency, and contrast of a moving grating, but largely independent on brightness. Eye velocity was a logarithmically linear function of grating contrast with a slope of approximately 0.8 per log unit contrast. CONCLUSIONS: The OKR of the larval zebrafish is not scaled for stimulus contrast and spatial frequency. These properties make the OKR a valuable tool to quantify behavioral visual performance such as visual acuity, contrast sensitivity, and light adaptation. This behavioral paradigm will be useful for analyzing visual performance in mutant and gene-knockdown larval zebrafish.


Subject(s)
Contrast Sensitivity/physiology , Nystagmus, Optokinetic/physiology , Space Perception/physiology , Zebrafish/physiology , Animals , Behavior, Animal/physiology , Larva/physiology , Light
5.
Nature ; 415(6868): 141-7, 2002 Jan 10.
Article in English | MEDLINE | ID: mdl-11805826

ABSTRACT

Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.


Subject(s)
Proteome/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/physiology , Cells, Cultured , Chromatography, Affinity , Gene Targeting , Humans , Macromolecular Substances , Proteome/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Sensitivity and Specificity , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...