Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703764

ABSTRACT

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Humans , Proteogenomics/methods , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Transcriptome/genetics , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic
3.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37582357

ABSTRACT

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Subject(s)
Neoplasms , Proteogenomics , Humans , Neoplasms/genetics , Oncogenes , Cell Transformation, Neoplastic/genetics , DNA Copy Number Variations
4.
Hum Mol Genet ; 32(22): 3135-3145, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37561409

ABSTRACT

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant condition characterized by the development of cutaneous and uterine leiomyomas and risk for development of an aggressive form of papillary renal cell cancer. HLRCC is caused by germline inactivating pathogenic variants in the fumarate hydratase (FH) gene, which encodes the enzyme that catalyzes the interconversion of fumarate and L-malate. We utilized enzyme and protein mobility assays to evaluate the FH enzyme in a cohort of patients who showed clinical manifestations of HLRCC but were negative for known pathogenic FH gene variants. FH enzyme activity and protein levels were decreased by 50% or greater in three family members, despite normal FH mRNA expression levels as measured by quantitative PCR. Direct Nanopore RNA sequencing demonstrated 57 base pairs of retained intron sequence between exons 9 and 10 of polyadenylated FH mRNA in these patients, resulting in a truncated FH protein. Genomic sequencing revealed a heterozygous intronic alteration of the FH gene (chr1: 241498239 T/C) resulting in formation of a splice acceptor site near a polypyrimidine tract, and a uterine fibroid obtained from a patient showed loss of heterozygosity at this site. The same intronic FH variant was identified in an unrelated patient who also showed a clinical phenotype of HLRCC. These data demonstrate that careful clinical assessment as well as biochemical characterization of FH enzyme activity, protein expression, direct RNA sequencing, and genomic DNA sequencing of patient-derived cells can identify pathogenic variants outside of the protein coding regions of the FH gene.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Leiomyomatosis , Skin Neoplasms , Uterine Neoplasms , Female , Humans , Carcinoma, Renal Cell/genetics , Leiomyomatosis/genetics , Leiomyomatosis/pathology , Fumarate Hydratase/genetics , Fumarate Hydratase/analysis , Kidney Neoplasms/genetics , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Mutation , RNA, Messenger/genetics
5.
Urology ; 179: 58-70, 2023 09.
Article in English | MEDLINE | ID: mdl-37331486

ABSTRACT

OBJECTIVE: To characterize the clinical manifestations and genetic basis of a familial cancer syndrome in patients with lipomas and Birt-Hogg-Dubé-like clinical manifestations including fibrofolliculomas and trichodiscomas and kidney cancer. METHODS: Genomic analysis of blood and renal tumor DNA was performed. Inheritance pattern, phenotypic manifestations, and clinical and surgical management were documented. Cutaneous, subcutaneous, and renal tumor pathologic features were characterized. RESULTS: Affected individuals were found to be at risk for a highly penetrant and lethal form of bilateral, multifocal papillary renal cell carcinoma. Whole genome sequencing identified a germline pathogenic variant in PRDM10 (c.2029 T>C, p.Cys677Arg), which cosegregated with disease. PRDM10 loss of heterozygosity was identified in kidney tumors. PRDM10 was predicted to abrogate expression of FLCN, a transcriptional target of PRDM10, which was confirmed by tumor expression of GPNMB, a TFE3/TFEB target and downstream biomarker of FLCN loss. In addition, a sporadic papillary RCC from the TCGA cohort was identified with a somatic PRDM10 mutation. CONCLUSION: We identified a germline PRDM10 pathogenic variant in association with a highly penetrant, aggressive form of familial papillary RCC, lipomas, and fibrofolliculomas/trichodiscomas. PRDM10 loss of heterozygosity and elevated GPNMB expression in renal tumors indicate that PRDM10 alteration leads to reduced FLCN expression, driving TFE3-induced tumor formation. These findings suggest that individuals with Birt-Hogg-Dubé-like manifestations and subcutaneous lipomas, but without a germline pathogenic FLCN variant, should be screened for germline PRDM10 variants. Importantly, kidney tumors identified in patients with a pathogenic PRDM10 variant should be managed with surgical resection instead of active surveillance.


Subject(s)
Birt-Hogg-Dube Syndrome , Carcinoma, Renal Cell , Kidney Neoplasms , Lipoma , Skin Neoplasms , Humans , Carcinoma, Renal Cell/complications , Carcinoma, Renal Cell/genetics , Birt-Hogg-Dube Syndrome/complications , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Lipoma/complications , Lipoma/genetics , Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , DNA-Binding Proteins , Membrane Glycoproteins
6.
Urology ; 176: 113-114, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37353242
7.
EBioMedicine ; 92: 104596, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37182269

ABSTRACT

BACKGROUND: Birt-Hogg-Dubé (BHD) syndrome, caused by germline alteration of folliculin (FLCN) gene, develops hybrid oncocytic/chromophobe tumour (HOCT) and chromophobe renal cell carcinoma (ChRCC), whereas sporadic ChRCC does not harbor FLCN alteration. To date, molecular characteristics of these similar histological types of tumours have been incompletely elucidated. METHODS: To elucidate renal tumourigenesis of BHD-associated renal tumours and sporadic renal tumours, we conducted whole genome sequencing (WGS) and RNA-sequencing (RNA-seq) of sixteen BHD-associated renal tumours from nine unrelated BHD patients, twenty-one sporadic ChRCCs and seven sporadic oncocytomas. We then compared somatic mutation profiles with FLCN variants and RNA expression profiles between BHD-associated renal tumours and sporadic renal tumours. FINDINGS: RNA-seq analysis revealed that BHD-associated renal tumours and sporadic renal tumours have totally different expression profiles. Sporadic ChRCCs were clustered into two distinct clusters characterized by L1CAM and FOXI1 expressions, molecular markers for renal tubule subclasses. Increased mitochondrial DNA (mtDNA) copy number with fewer variants was observed in BHD-associated renal tumours compared to sporadic ChRCCs. Cell-of-origin analysis using WGS data demonstrated that BHD-associated renal tumours and sporadic ChRCCs may arise from different cells of origin and second hit FLCN alterations may occur in early third decade of life in BHD patients. INTERPRETATION: These data further our understanding of renal tumourigenesis of these two different types of renal tumours with similar histology. FUNDING: This study was supported by JSPS KAKENHI Grants, RIKEN internal grant, and the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), Center for Cancer Research.


Subject(s)
Birt-Hogg-Dube Syndrome , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/complications , Carcinogenesis , RNA , Forkhead Transcription Factors
8.
J Exp Clin Cancer Res ; 42(1): 99, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37095531

ABSTRACT

BACKGROUND: MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS: TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS: The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS: The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , MTOR Inhibitors , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Translocation, Genetic , Phosphatidylinositol 3-Kinase , Membrane Glycoproteins/genetics
9.
EMBO Mol Med ; 15(5): e16877, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36987696

ABSTRACT

Birt-Hogg-Dubé (BHD) syndrome is an inherited familial cancer syndrome characterized by the development of cutaneous lesions, pulmonary cysts, renal tumors and cysts and caused by loss-of-function pathogenic variants in the gene encoding the tumor-suppressor protein folliculin (FLCN). FLCN acts as a negative regulator of TFEB and TFE3 transcription factors, master controllers of lysosomal biogenesis and autophagy, by enabling their phosphorylation by the mechanistic Target Of Rapamycin Complex 1 (mTORC1). We have previously shown that deletion of Tfeb rescued the renal cystic phenotype of kidney-specific Flcn KO mice. Using Flcn/Tfeb/Tfe3 double and triple KO mice, we now show that both Tfeb and Tfe3 contribute, in a differential and cooperative manner, to kidney cystogenesis. Remarkably, the analysis of BHD patient-derived tumor samples revealed increased activation of TFEB/TFE3-mediated transcriptional program and silencing either of the two genes rescued tumorigenesis in human BHD renal tumor cell line-derived xenografts (CDXs). Our findings demonstrate in disease-relevant models that both TFEB and TFE3 are key drivers of renal tumorigenesis and suggest novel therapeutic strategies based on the inhibition of these transcription factors.


Subject(s)
Birt-Hogg-Dube Syndrome , Cysts , Kidney Neoplasms , Humans , Mice , Animals , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Transcription Factors , Carcinogenesis/genetics
10.
PLoS One ; 17(12): e0278108, 2022.
Article in English | MEDLINE | ID: mdl-36455002

ABSTRACT

Germline mutations within the Krebs cycle enzyme genes fumarate hydratase (FH) or succinate dehydrogenase (SDHB, SDHC, SDHD) are associated with an increased risk of aggressive and early metastasizing variants of renal cell carcinoma (RCC). These RCCs express significantly increased levels of intracellular fumarate or succinate that inhibit 2-oxoglutarate-dependent dioxygenases, such as the TET enzymes that regulate DNA methylation. This study evaluated the genome-wide methylation profiles of 34 RCCs from patients with RCC susceptibility syndromes and 11 associated normal samples using the Illumina HumanMethylation450 BeadChip. All the HLRCC (FH mutated) and SDHB-RCC (SDHB mutated) tumors demonstrated a distinct CpG island methylator phenotype (CIMP). HLRCC tumors demonstrated an extensive and relatively uniform level of hypermethylation that showed some correlation with tumor size. SDHB-RCC demonstrated a lesser and more varied pattern of hypermethylation that overlapped in part with the HLRCC hypermethylation. Combined methylation and mRNA expression analysis of the HLRCC tumors demonstrated hypermethylation and transcription downregulation of genes associated with the HIF pathway, HIF3A and CITED4, the WNT pathway, SFRP1, and epithelial-to-mesenchymal transition and MYC expression, OVOL1. These observations were confirmed in the TCGA CIMP-RCC tumors. A selected panel of probes could identify the CIMP tumors and differentiate between HLRCC and SDHB-RCC tumors. This panel accurately detected all CIMP-RCC tumors within the TCGA RCC cohort, identifying them as HLRCC -like, and could potentially be used to create a liquid biopsy-based screening tool. The CIMP signature in these aggressive tumors could provide both a useful biomarker for diagnosis and a target for novel therapies.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Fumarate Hydratase/genetics , Carcinoma, Renal Cell/genetics , Germ-Line Mutation , CpG Islands/genetics , Kidney Neoplasms/genetics , Phenotype , Succinate Dehydrogenase/genetics , Repressor Proteins , Apoptosis Regulatory Proteins
11.
J Exp Clin Cancer Res ; 41(1): 208, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35754026

ABSTRACT

BACKGROUND: There is no universally accepted treatment for patients with advanced papillary renal cell carcinoma (PRCC). The presence of activating mutations in MET, as well as gain of chromosome 7, where the MET gene is located, are the most common genetic alterations associated with PRCC, leading to the clinical evaluation of MET tyrosine kinase inhibitors (TKIs) in this cancer. However, TKIs targeting MET selectively, as well as multitargeted TKIs with activity against MET demonstrate modest efficacy in PRCC and primary and secondary treatment failure is common; other approaches are urgently needed to improve outcomes in these patients. METHODS: High throughput screening with small molecule libraries identified HSP90 inhibitors as agents of interest based on antitumor activity against patient derived PRCC cell lines. We investigated the activity of the orally available HSP90 inhibitor, SNX2112 in vitro, using 2D/3D PRCC cell culture models and in vivo, in mice tumor xenograft models. The molecular pathways mediating antitumor activity of SNX2112 were assessed by Western blot analysis, Flow cytometry, RNA-seq analysis, Real Time qPCR and imaging approaches. RESULTS: SNX2112 significantly inhibited cellular proliferation, induced G2/M cell cycle arrest and apoptosis in PRCC lines overexpressing MET. In contrast to TKIs targeting MET, SNX2112 inhibited both MET and known downstream mediators of MET activity (AKT, pAKT1/2 and pERK1/2) in PRCC cell lines. RNAi silencing of AKT1/2 or ERK1/2 expression significantly inhibited growth in PRCC cells. Furthermore, SNX2112 inhibited a unique set of E2F and MYC targets and G2M-associated genes. Interestingly, interrogation of the TCGA papillary RCC cohort revealed that these genes were overexpressed in PRCC and portend a poor prognosis. Finally, SNX-2112 demonstrated strong antitumor activity in vivo and prolonged survival of mice bearing human PRCC xenograft. CONCLUSIONS: These results demonstrate that HSP90 inhibition is associated with potent activity in PRCC, and implicate the PI3K/AKT and MEK/ERK1/2 pathways as important mediators of tumorigenesis. These data also provide the impetus for further clinical evaluation of HSP90, AKT, MEK or E2F pathway inhibitors in PRCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , HSP90 Heat-Shock Proteins/genetics , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice , Mitogen-Activated Protein Kinase Kinases , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt
12.
Urology ; 165: 170-177, 2022 07.
Article in English | MEDLINE | ID: mdl-35469800

ABSTRACT

OBJECTIVE: To evaluate whether bilateral, multifocal clear cell renal cell carcinoma (ccRCC) patients can be differentiated by VHL mutation analysis into cases that represent either multiple independently arising primary tumors, or a single primary tumor which has spread ipsilaterally as well as to the contralateral kidney. The nature of kidney cancer multifocality outside of known hereditary syndromes is as yet poorly understood. MATERIALS AND METHODS: DNA from multiple tumors per patient were evaluated for somatic VHL gene mutation and hypermethylation. A subset of tumors with shared VHL mutations were analyzed with targeted, next-generation sequencing assays. RESULTS: This cohort contained 5 patients with multiple tumors that demonstrated a shared somatic VHL mutation consistent with metastatic spread including to the contralateral kidney. In several cases this was substantiated by additional shared somatic mutations in ccRCC-associated genes. In contrast, the remaining 14 patients with multiple tumors demonstrated unique, unshared VHL alterations in every analyzed tumor, consistent with independently arising kidney tumors. None of these latter patients showed any evidence of local spread or distant metastasis. CONCLUSION: The spectrum of VHL alterations within evaluated bilateral, multifocal ccRCC tumors from a single patient can distinguish between multiple independent tumor growth and metastasis. This can be performed using currently available clinical genetic tests and will improve the accuracy of patient diagnosis and prognosis, as well as informing appropriate management.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Von Hippel-Lindau Tumor Suppressor Protein , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , DNA Methylation , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mutation , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
13.
J Med Genet ; 59(1): 18-22, 2022 01.
Article in English | MEDLINE | ID: mdl-33067352

ABSTRACT

Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary tumour susceptibility disease caused by germline pathogenic variation of the VHL tumour suppressor gene. Affected individuals are at risk of developing multiple malignant and benign tumours in a number of organs.In this report, a male patient in his 20s who presented to the Urologic Oncology Branch at the National Cancer Institute with a clinical diagnosis of VHL was found to have multiple cerebellar haemangioblastomas, bilateral epididymal cysts, multiple pancreatic cysts, and multiple, bilateral renal tumours and cysts. The patient had no family history of VHL and was negative for germline VHL mutation by standard genetic testing. Further genetic analysis demonstrated a germline balanced translocation between chromosomes 1 and 3, t(1;3)(p36.3;p25) with a breakpoint on chromosome 3 within the second intron of the VHL gene. This created a pathogenic germline alteration in VHL by a novel mechanism that was not detectable by standard genetic testing.Karyotype analysis is not commonly performed in existing genetic screening protocols for patients with VHL. Based on this case, protocols should be updated to include karyotype analysis in patients who are clinically diagnosed with VHL but demonstrate no detectable mutation by existing genetic testing.


Subject(s)
Germ-Line Mutation , Translocation, Genetic , Von Hippel-Lindau Tumor Suppressor Protein/genetics , von Hippel-Lindau Disease/genetics , Cerebellar Neoplasms/etiology , DNA Mutational Analysis , Hemangioblastoma/etiology , Humans , Kidney Neoplasms/etiology , Male , Exome Sequencing , von Hippel-Lindau Disease/complications
14.
Soc Int Urol J ; 3(6): 386-396, 2022 Nov.
Article in English | MEDLINE | ID: mdl-38840811

ABSTRACT

Renal cell carcinoma is a diverse group of diseases that can be distinguished by distinct histopathologic and genomic features. In this comprehensive review, we highlight recent advancements in our understanding of the genetic and microenvironmental hallmarks of kidney cancer. We begin with clear cell renal cell carcinoma (ccRCC), the most common subtype of this disease. We review the chromosomal and genetic alterations that drive initiation and progression of ccRCC, which has recently been shown to follow multiple highly conserved evolutionary trajectories that in turn impact disease progression and prognosis. We also review the diverse genetic events that define the many recently recognized rare subtypes within non-clear cell RCC. Finally, we discuss our evolving understanding of the ccRCC microenvironment, which has been revolutionized by recent bulk and single-cell transcriptomic analyses, suggesting potential biomarkers for guiding systemic therapy in the management of advanced ccRCC.

15.
J Cancer ; 12(18): 5375-5384, 2021.
Article in English | MEDLINE | ID: mdl-34405000

ABSTRACT

Intratumoral heterogeneity (IH) has been recently described as an important contributor to tumor growth through a branched rather than a linear pattern of tumor evolution for renal cell carcinoma. As to whether the miRNA profiling of the different and heterogeneous areas is the same or not, it is not known. This study analyzed the differences and similarities of the miRNA profiles in histologically distinct regions within several RCC tumors. The observed differences may have great implications for the development of predictive biomarkers and the identification of druggable targets with improvement of combinatorial therapeutic approaches for the effective treatment of kidney cancer, as well as for the identification of circulating malignant cells that can be useful to detect tumor recurrences.

16.
Hum Mutat ; 42(5): 520-529, 2021 05.
Article in English | MEDLINE | ID: mdl-33675279

ABSTRACT

Von Hippel-Lindau (VHL) is a hereditary multisystem disorder caused by germline alterations in the VHL gene. VHL patients are at risk for benign as well as malignant lesions in multiple organs including kidney, adrenal, pancreas, the central nervous system, retina, endolymphatic sac of the ear, epididymis, and broad ligament. An estimated 30%-35% of all families with VHL inherit a germline deletion of one, two, or all three exons. In this study, we have extensively characterized germline deletions identified in patients from 71 VHL families managed at the National Cancer Institute, including 59 partial (PD) and 12 complete VHL deletions (CD). Deletions that ranged in size from 1.09 to 355 kb. Fifty-eight deletions (55 PD and 3 CD) have been mapped to the exact breakpoints. Ninety-five percent (55 of 58) of mapped deletions involve Alu repeats at both breakpoints. Several novel classes of deletions were identified in this cohort, including two cases that have complex rearrangements involving both deletion and inversion, two cases with inserted extra Alu-like sequences, six cases that involve breakpoints in Alu repeats situated in opposite orientations, and a "hotspot" PD of Exon 3 observed in 12 families that involves the same pair of Alu repeats.


Subject(s)
von Hippel-Lindau Disease , Female , Gene Deletion , Germ Cells , Germ-Line Mutation , Humans , Male , Von Hippel-Lindau Tumor Suppressor Protein/genetics , von Hippel-Lindau Disease/genetics
17.
Genes Chromosomes Cancer ; 60(6): 434-446, 2021 06.
Article in English | MEDLINE | ID: mdl-33527590

ABSTRACT

Renal cell carcinoma (RCC) is not a single disease but is made up of several different histologically defined subtypes that are associated with distinct genetic alterations which require subtype specific management and treatment. Papillary renal cell carcinoma (pRCC) is the second most common subtype after conventional/clear cell RCC (ccRCC), representing ~20% of cases, and is subcategorized into type 1 and type 2 pRCC. It is important for preclinical studies to have cell lines that accurately represent each specific RCC subtype. This study characterizes seven cell lines derived from both primary and metastatic sites of type 1 pRCC, including the first cell line derived from a hereditary papillary renal carcinoma (HPRC)-associated tumor. Complete or partial gain of chromosome 7 was observed in all cell lines and other common gains of chromosomes 16, 17, or 20 were seen in several cell lines. Activating mutations of MET were present in three cell lines that all demonstrated increased MET phosphorylation in response to HGF and abrogation of MET phosphorylation in response to MET inhibitors. CDKN2A loss due to mutation or gene deletion, associated with poor outcomes in type 1 pRCC patients, was observed in all cell line models. Six cell lines formed tumor xenografts in athymic nude mice and thus provide in vivo models of type 1 pRCC. These type 1 pRCC cell lines provide a comprehensive representation of the genetic alterations associated with pRCC that will give insight into the biology of this disease and be ideal preclinical models for therapeutic studies.


Subject(s)
Carcinoma, Renal Cell/genetics , Cell Line Authentication/methods , Kidney Neoplasms/genetics , Xenograft Model Antitumor Assays/methods , Animals , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Chromosomal Instability , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Humans , Kidney Neoplasms/pathology , Mice , Mutation , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism
18.
Sci Signal ; 14(664)2021 01 05.
Article in English | MEDLINE | ID: mdl-33402335

ABSTRACT

Understanding the mechanisms of the Warburg shift to aerobic glycolysis is critical to defining the metabolic basis of cancer. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an aggressive cancer characterized by biallelic inactivation of the gene encoding the Krebs cycle enzyme fumarate hydratase, an early shift to aerobic glycolysis, and rapid metastasis. We observed impairment of the mitochondrial respiratory chain in tumors from patients with HLRCC. Biochemical and transcriptomic analyses revealed that respiratory chain dysfunction in the tumors was due to loss of expression of mitochondrial DNA (mtDNA)-encoded subunits of respiratory chain complexes, caused by a marked decrease in mtDNA content and increased mtDNA mutations. We demonstrated that accumulation of fumarate in HLRCC tumors inactivated the core factors responsible for replication and proofreading of mtDNA, leading to loss of respiratory chain components, thereby promoting the shift to aerobic glycolysis and disease progression in this prototypic model of glucose-dependent human cancer.


Subject(s)
Carcinoma, Renal Cell/genetics , Citric Acid Cycle , DNA Damage , DNA, Mitochondrial/metabolism , Fumarate Hydratase/genetics , Kidney Neoplasms/genetics , Leiomyomatosis/enzymology , Neoplastic Syndromes, Hereditary/enzymology , Skin Neoplasms/enzymology , Uterine Neoplasms/enzymology , Adult , Aged , Carcinoma, Renal Cell/etiology , Carcinoma, Renal Cell/metabolism , DNA Repair , DNA Replication , Female , Fumarate Hydratase/deficiency , Gene Expression Profiling , Humans , Kidney Neoplasms/etiology , Kidney Neoplasms/metabolism , Leiomyomatosis/complications , Male , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Neoplastic Syndromes, Hereditary/complications , Skin Neoplasms/complications , Uterine Neoplasms/complications , Young Adult
19.
Clin Genitourin Cancer ; 19(2): 167-175, 2021 04.
Article in English | MEDLINE | ID: mdl-33358149

ABSTRACT

Close to 74,000 cases of renal cell carcinoma (RCC) are diagnosed each year in the United States. The past 2 decades have shown great developments in surgical techniques, targeted therapy and immunotherapy agents, and longer complete response rates. However, without a global cure, there is still room for further advancement in improving patient care in this space. To address some of the gaps restricting this progress, the Kidney Cancer Association brought together a group of 27 specialists across the areas of clinical care, research, industry, and advocacy at the inaugural "Think Tank: Coalition for a Cure" session. Topics addressed included screening, imaging, rarer RCC subtypes, combination drug therapy options, and patient response. This commentary summarizes the discussion of these topics and their respective clinical challenges, along with a proposal of projects for collaboration in overcoming those needs and making a greater impact on care for patients with RCC moving forward.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/therapy , Humans , Kidney Neoplasms/therapy , United States
20.
Urology ; 149: 89-97, 2021 03.
Article in English | MEDLINE | ID: mdl-33242557

ABSTRACT

OBJECTIVES: To characterize the clinical presentation, genomic alterations, pathologic phenotype and clinical management of microphthalmia-associated transcription factor (MITF) familial renal cell carcinoma (RCC), caused by a member of the TFE3, TFEB, and MITF family of transcription factor genes. METHODS: The clinical presentation, family history, tumor histopathology, and surgical management were evaluated and reported herein. DNA sequencing was performed on blood DNA, tumor DNA and DNA extracted from adjacent normal kidney tissue. Copy number and gene expression analyses on tumor and normal tissues were performed by Real-Time Polymerase chain reaction. TCGA gene expression data were used for comparative analysis. Protein expression and subcellular localization were evaluated by immunohistochemistry. RESULTS: Germline genomic analysis identified the MITF p.E318K variant in a patient with bilateral, multifocal type 1 papillary RCC and a family history of RCC. All tumors displayed the MITF variant and were characterized by amplification of chromosomes 7 and 17, hallmarks of type 1 papillary RCC. We demonstrated that MITF p.E318K variant results in altered transcriptional activity and that downstream targets of MiT family members, such as GPNMB, are dysregulated in the tumors. CONCLUSION: Association of the pathogenic MITF variant with bilateral and multifocal type 1 papillary RCC in this family supports its role as a risk allele for the development of RCC and emphasizes the importance of screening for MITF variants irrelevant of the RCC histologic subtype. This study identifies potential biomarkers for the disease, such as GPNMB expression, that may facilitate the development of targeted therapies for patients affected with MITF-associated RCC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Microphthalmia-Associated Transcription Factor/genetics , Adult , Carcinogenesis/genetics , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/surgery , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Kidney/diagnostic imaging , Kidney/pathology , Kidney/surgery , Kidney Neoplasms/diagnosis , Kidney Neoplasms/pathology , Kidney Neoplasms/surgery , Male , Membrane Glycoproteins/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Nephrectomy , Pedigree , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...