Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Lifestyle Genom ; 17(1): 64-71, 2024.
Article in English | MEDLINE | ID: mdl-38865975

ABSTRACT

INTRODUCTION: The effects of the rs822393 variant of ADIPOQ gene on metabolic parameters such as insulin resistance and adiponectin levels following weight loss through dietary intervention are still uncertain. The aim of this study was to evaluate the role of rs822393 of ADIPOQ gene on adiponectin levels and metabolic parameters after weight loss with a high-fat hypocaloric diet with Mediterranean pattern during 12 weeks. METHODS: A population of 283 patients with obesity was allocated to a dietary intervention trial with a high-fat hypocaloric diet during 12 weeks. Adiposity and biochemical parameters were determined. rs822393 was assessed with a dominant model analysis (CC vs. CT + TT). RESULTS: These patients had three different genotypes: CC (59.0%), CT (33.6%), and TT (7.4%). The allelic frequencies for C and T were 0.89 and 0.20, respectively. Basal and post-intervention HDL cholesterol, adiponectin levels, and adiponectin/leptin ratio were lower in T-allele than non-T-allele carriers. After dietary intervention, BMI, weight, fat mass, waist circumference, systolic blood pressure, insulin, HOMA-IR, leptin, total cholesterol, and LDL cholesterol levels improved significantly in both genotype groups. Moreover, HDL cholesterol (CC vs. CT + TT) (delta: 8.9 ± 1.1 mg/dL vs. 1.7 ± 0.8 mg/dL; p = 0.02), serum adiponectin in non-T-allele carriers (43.1 ± 5.9 ng/dL vs. 2.8 ± 3 0.0 ng/dL; p = 0.01), and adiponectin/leptin ratio (1.37 ± 0.1 units vs. 0.17 ± 0.08 units; p = 0.02) improved only in non-T-allele carriers after weight loss. CONCLUSION: Individuals with obesity and without the T allele of rs822393 experienced improvements in adiponectin levels, adiponectin/leptin ratio, and HDL cholesterol levels after following a high-fat hypocaloric diet with a Mediterranean pattern.


Subject(s)
Adiponectin , Diet, High-Fat , Diet, Mediterranean , Obesity , Weight Loss , Humans , Adiponectin/blood , Adiponectin/genetics , Weight Loss/genetics , Male , Female , Middle Aged , Adult , Obesity/genetics , Obesity/diet therapy , Polymorphism, Single Nucleotide , Insulin Resistance , Genotype , Diet, Reducing , Leptin/blood , Leptin/genetics , Caloric Restriction , Gene Frequency , Alleles , Body Mass Index
2.
Microorganisms ; 12(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38930451

ABSTRACT

The human microbiome, a complex ecosystem of bacteria, viruses, and protozoans living in symbiosis with the host, plays a crucial role in human health, influencing everything from metabolism to immune function. Dysbiosis, or an imbalance in this ecosystem, has been linked to various health issues, including diabetes and gestational diabetes (GD). In diabetes, dysbiosis affects the function of adipose tissue, leading to the release of adipokines and cytokines, which increase inflammation and insulin resistance. During pregnancy, changes to the microbiome can exacerbate glucose intolerance, a common feature of GD. Over the past years, burgeoning insights into the gut microbiota have unveiled its pivotal role in human health. This article comprehensively reviews literature from the last seven years, highlighting the association between gut microbiota dysbiosis and GD, as well as the metabolism of antidiabetic drugs and the potential influences of diet and probiotics. The underlying pathophysiological mechanisms discussed include the impact of dysbiosis on systemic inflammation and the interplay with genetic and environmental factors. By focusing on recent studies, the importance of considering microbial health in the prevention and treatment of GD is emphasized, providing insights into future research directions and clinical applications to improve maternal-infant health outcomes.

3.
J Cardiovasc Dev Dis ; 11(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38921682

ABSTRACT

AIM: To assess the acute effect of empagliflozin versus dapagliflozin administration on flow-mediated vasodilation in patients with type 2 diabetes mellitus. DESIGN: A double-blind clinical trial, at the Experimental and Clinical Therapeutics Institute, University Health Sciences Center, at the Universidad de Guadalajara, in inpatients with T2D according to the 2023 ADA criteria. METHODS: Thirty patients (15 males and 15 females), aged between 35 and 65 years, were included in this study, according to the 2023 ADA criteria. The eligible patients were randomly assigned to three groups: empagliflozin 25 mg once daily, dapagliflozin 10 mg once daily, or placebo once daily. Anthropometric parameters were taken using validated techniques. FMD was measured using a high-resolution semiautomatic ultrasound UNEX-EF 38G (UNEX Co., Ltd., Nagoya, Japan). Arterial tension was determined with the OMRON electronic digital sphygmomanometer (HEM 907 XL, Kyoto, Japan). RESULTS: The group of patients who received empagliflozin had a significantly lower baseline flow-mediated dilation (FMD) compared to the group receiving dapagliflozin (p = 0.017); at the end of this study, the empagliflozin group achieved a comparable FMD to the dapagliflozin group (p = 0.88). CONCLUSION: After the treatment period, the empagliflozin and dapagliflozin groups achieved similar FMD, suggesting a class effect.

4.
Foods ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928809

ABSTRACT

Nutraceuticals obtained from sprouted wheat and oat grains and processing by-products (bran and hull, respectively) naturally containing antioxidant and anti-inflammatory compounds were evaluated. The objective of this study was the development of a cereal-based nutraceutical formula combining extracts from sprouts and by-products and the exploration for potential synergetic effects in their bioactive properties. The antioxidant and anti-inflammatory capacities, glycemic index, phytic acid, and ß-glucan of individual wheat bran hydrolysate (EH-WB), sprouted wheat (SW), oat hull hydrolysate (EH-OH), sprouted oat (SO), and combined ingredients (CI 1, CI 2, and CI3) were used to tailor an optimal nutraceutical formula. The three blend ingredients (CI 1, CI2, and CI3) were formulated at different ratios (EH-WB:SW:EH-OH:SO; 1:1:1:1, 2:1:2:1, and 1:2:1:2, w:w:w:w, respectively). The resulting mixtures showed total phenol (TPs) content ranging from 412.93 to 2556.66 µmol GAE 100 g-1 and antioxidant capacity values from 808.14 to 22,152.54 µmol TE 100 g-1 (ORAC) and 1914.05 to 7261.32 µmol TE 100 g-1 (ABTS•+), with Fe3+ reducing ability from 734. 02 to 8674.51 mmol reduced Fe 100 g-1 (FRAP) for the individual ingredients produced from EH-WB and EH-OH, where high antioxidant activity was observed. However, the anti-inflammatory results exhibited an interesting behavior, with a potentially synergistic effect of the individual ingredients. This effect was observed in CI2 and CI3, resulting in a higher ability to inhibit IL-6 and TNF-α than expected based on the anti-inflammatory values of their individual ingredients. Similar to the antioxidant properties, oat-based ingredients significantly contributed more to the anti-inflammatory properties of the overall mixture. This contribution is likely associated with the ß-glucans and avenanthramides present in oats. To ensure the bioaccessibility of these ingredients, further studies including simulated digestion protocols would be necessary. The ingredient formulated with a 2:1 hydrolysate-to-sprout ratio was the most effective combination, reaching higher biological characteristics.

5.
Entropy (Basel) ; 26(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38785612

ABSTRACT

Social media has dramatically influenced how individuals and groups express their demands, concerns, and aspirations during social demonstrations. The study of X or Twitter hashtags during those events has revealed the presence of some temporal points characterised by high correlation among their participants. It has also been reported that the connectivity presents a modular-to-nested transition at the point of maximum correlation. The present study aims to determine whether it is possible to characterise this transition using entropic-based tools. Our results show that entropic analysis can effectively find the transition point to the nested structure, allowing researchers to know that the transition occurs without the need for a network representation. The entropic analysis also shows that the modular-to-nested transition is characterised not by the diversity in the number of hashtags users post but by how many hashtags they share.

6.
ACS Synth Biol ; 13(3): 901-912, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38445989

ABSTRACT

In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in Escherichia coli. Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in Anabaena sp. strain PCC 7120. The comparatively large plasmids containing CAST and the engineered transposon were successfully transferred into Anabaena via conjugation using either suicide or replicative plasmids. Single guide (sg) RNA encoding the leading but not the reverse complement strand of the target were effective with the protospacer-associated motif (PAM) sequence included in the sgRNA. In four out of six cases analyzed over two distinct target loci, the insertion site was exactly 63 bases after the PAM. CAST on a replicating plasmid was toxic, which could be used to cure the plasmid. In all six cases analyzed, only the transposon cargo defined by the sequence ranging from left and right elements was inserted at the target loci; therefore, RNA-guided transposition resulted from cut and paste. No endogenous transposons were remobilized by exposure to CAST enzymes. This work is foundational for genome editing by RNA-guided transposition in filamentous cyanobacteria, whether in culture or in complex communities.


Subject(s)
Anabaena , Cyanobacteria , Humans , RNA, Guide, CRISPR-Cas Systems , RNA , Plasmids/genetics , Anabaena/genetics , Cyanobacteria/genetics , DNA , Escherichia coli/genetics , DNA Transposable Elements/genetics
7.
Cell Rep ; 43(4): 113895, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38517894

ABSTRACT

Topologically associated domains (TADs) are interaction subnetworks of chromosomal regions in 3D genomes. TAD boundaries frequently coincide with genome breaks while boundary deletion is under negative selection, suggesting that TADs may facilitate genome rearrangements and evolution. We show that genes co-localize by evolutionary age in humans and mice, resulting in TADs having different proportions of younger and older genes. We observe a major transition in the age co-localization patterns between the genes born during vertebrate whole-genome duplications (WGDs) or before and those born afterward. We also find that genes recently duplicated in primates and rodents are more frequently essential when they are located in old-enriched TADs and interact with genes that last duplicated during the WGD. Therefore, the evolutionary relevance of recent genes may increase when located in TADs with established regulatory networks. Our data suggest that TADs could play a role in organizing ancestral functions and evolutionary novelty.


Subject(s)
Chromatin , Evolution, Molecular , Gene Duplication , Genome , Animals , Humans , Chromatin/metabolism , Chromatin/genetics , Mice
8.
Foods ; 13(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38540847

ABSTRACT

Grenache (GN) and Cabernet Sauvignon (CS) are two traditional red grape varieties widely cultivated in the Mediterranean area and both late-ripening cultivars, which makes them less sensitive to global warming conditions and more stable to harvest timing. Although different studies have evaluated the final antioxidant properties of grapes and pomaces, few studies have explored the effect of sun exposure and harvest on the nutritional and antioxidant properties of these products. This study investigates the control of sunlight and ripening as tools to tailor nutritional and antioxidant properties of grape juices (GJ) and their byproducts (pomace GP). The compositional analysis showed no significant (p ≥ 0.05) differences associated to either harvesting timing or exposure to sunlight for either of the two studied varieties. However, differences (p ≤ 0.05) were observed between varieties of protein and total dietary fibre (TDF). CS protein content ranged from 0.52 to 3.88 (g 100 g-1) in GJ and from 1.0 to 1.32 (g 100 g-1) in GP; meanwhile, GN had higher protein values in GJ (from 2.11 to 4.77 g 100 g-1) and GP (from 5.11 to 6.75 g 100 g-1). The opposite behaviour was observed in TDF; CS grape had higher values for juice (from 11.43 to 19.53 g 100 g-1) and pomace (from 42.20 to 65.80 g 100 g-1) than GN (from 11.43 to 17.22 g 100 g-1 in juice and from 25.90 to 54.0 g 100 g-1 in pomace). The total phenolic content (TP) in GP was 100 times higher than in the juices and showed a much less pronounced evolution compared to the GJ during the harvesting time. GN TP values ranged from 5835 to 8772 mg GAE 100 g-1; meanwhile, CS values ranged from 7637 to 9040 mg GAE 100 g-1. A significant (p ≤ 0.05) correlation between the TP total antioxidant capacity (TAC) results was observed, regardless of variety, harvesting time, and sunlight exposure. These findings show how the control of different factors can contribute to obtain modified grape-derived products from conventional varieties beyond the wine market.

9.
Foods ; 13(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338514

ABSTRACT

Wheat bran (WB) and oat hull (OH) are two interesting undervalued cereal processing sources rich in total dietary fibre (TDF) and other associated bioactive compounds, such as ß-glucans and polyphenols. The aim of this study was to optimise a combination chemical (enzymes) and physical (high hydrostatic pressure-temperature) strategies to increase the bioaccessibility of bioactive compounds naturally bound to the bran and hull outer layers. WB and OH were hydrolysed using food-grade enzymes (UltraFloXL and Viscoferm, for WB and OH, respectively) in combination with HPP at different temperatures (40, 50, 60 and 70 °C) and hydrolysis either before or after HPP. Proximal composition, phytic acid, ß-glucans, total phenolics (TPs) and total antioxidant activity (TAC) were evaluated to select the processing conditions for optimal nutritional and bioactive properties of the final ingredients. The application of the hydrolysis step after the HPP treatment resulted in lower phytic acid levels in both matrices (WB and OH). On the other hand, the release of ß-glucan was more effective at the highest temperature (70 °C) used during pressurisation. After the treatment, the TP content ranged from 756.47 to 1395.27 µmol GAE 100 g-1 in WB, and OH showed values from 566.91 to 930.45 µmol GAE 100 g-1. An interaction effect between the temperature and hydrolysis timing (applied before or after HPP) was observed in the case of OH. Hydrolysis applied before HPP was more efficient in releasing OH TPs at lower HPP temperatures (40-50 °C); meanwhile, at higher HPP temperatures (60-70 °C), hydrolysis yielded higher TP values when applied after HPP. This effect was not observed in WB, where the hydrolysis was more effective before HPP. The TP results were significantly correlated with the TAC values. The results showed that the application of optimal process conditions (hydrolysis before HPP at 60 or 70 °C for WB; hydrolysis after HPP at 70 °C for OH) can increase the biological value of the final ingredients obtained.

10.
Nutrients ; 15(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37960235

ABSTRACT

Graft-versus-host disease (GvHD) is a common and severe complication following allogeneic hematopoietic stem cell transplantation (HSCT). Its prevention and treatment is a major challenge. Ferulic acid (FA) has anti-inflammatory and antioxidant properties that could be attractive in this setting. Our aim was to evaluate a bioactive ingredient derived from wheat bran (WB), selected for its high concentration of FA, in a murine model of GvHD. The ingredient was obtained via a bioprocess involving hydrolysis and spray-drying. GvHD was induced via HSCT between MHC-mismatched mouse strains. FA treatment was administered orally. Survival and disease scores (weight loss, hunching, activity, fur texture, and skin integrity, each scored between 0 and 2 depending on disease severity) were recorded daily, histological evaluation was performed at the end of the experiment, and serum inflammatory cytokines were analyzed on days 9 and 28. Treatment with FA did not protect GvHD mice from death, nor did it diminish GvHD scores. However, histological analysis showed that ulcers with large areas of inflammatory cells, vessels, and keratin were less common in skin samples from FA-treated mice. Areas of intense inflammatory response were also seen in fewer small intestine samples from treated mice. In addition, a slight decrease in INF-γ and TNF-α expression was observed in the serum of treated mice on day 28. The results showed some local effect of the ingredient intervention, but that the dose used may not be sufficient to control or reduce the inflammatory response at the systemic level in mice with GvHD. Higher dosages of FA may have an impact when evaluating the immunomodulatory capabilities of the hydrolyzed WB ingredient. Thus, further experiments and the use of technological strategies that enrich the ingredients in soluble ferulic acid to improve its efficacy in this setting are warranted.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Animals , Dietary Fiber/pharmacology , Dietary Fiber/therapeutic use , Disease Models, Animal , Graft vs Host Disease/drug therapy , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Dietary Supplements
11.
Nat Commun ; 14(1): 7243, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945563

ABSTRACT

Histone modifications influence the recruitment of reader proteins to chromosomes to regulate events including transcription and cell division. The idea of a histone code, where combinations of modifications specify unique downstream functions, is widely accepted and can be demonstrated in vitro. For example, on synthetic peptides, phosphorylation of Histone H3 at threonine-3 (H3T3ph) prevents the binding of reader proteins that recognize trimethylation of the adjacent lysine-4 (H3K4me3), including the TAF3 component of TFIID. To study these combinatorial effects in cells, we analyzed the genome-wide distribution of H3T3ph and H3K4me2/3 during mitosis. We find that H3T3ph anti-correlates with adjacent H3K4me2/3 in cells, and that the PHD domain of TAF3 can bind H3K4me2/3 in isolated mitotic chromatin despite the presence of H3T3ph. Unlike in vitro, H3K4 readers are still displaced from chromosomes in mitosis in Haspin-depleted cells lacking H3T3ph. H3T3ph is therefore unlikely to be responsible for transcriptional downregulation during cell division.


Subject(s)
Histones , Transcription Factors , Histones/metabolism , Phosphorylation , Transcription Factors/metabolism , Reading , Chromosomes/genetics , Chromosomes/metabolism , Mitosis/genetics
12.
Foods ; 12(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37685144

ABSTRACT

During the last few years, the increasing evidence of dietary antioxidant compounds and reducing chronic diseases and the relationship between diet and health has promoted an important innovation within the baked product sector, aiming at healthier formulations. This study aims to develop a tool based on mathematical models to predict baked goods' total antioxidant capacity (TAC). The high variability of antioxidant properties of flours based on the aspects related to the type of grain, varieties, proximal composition, and processing, among others, makes it very difficult to innovate on food product development without specific analysis. Total phenol content (TP), oxygen radical absorbance capacity (ORAC), and ferric-reducing antioxidant power assay (FRAP) were used as markers to determine antioxidant capacity. Three Bayesian-type models are proposed based on a double exponential parameterized curve that reflects the initial decrease and subsequent increase as a consequence of the observed processes of degradation and generation, respectively, of the antioxidant compounds. Once the values of the main parameters of each curve were determined, support vector machines (SVM) with an exponential kernel allowed us to predict the values of TAC, based on baking conditions (temperature and time), proteins, and fibers of each native grain.

13.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765140

ABSTRACT

Giardia lamblia is a highly infectious protozoan that causes giardiasis, a gastrointestinal disease with short-term and long-lasting symptoms. The currently available drugs for giardiasis treatment have limitations such as side effects and drug resistance, requiring the search for new antigiardial compounds. Drug repurposing has emerged as a promising strategy to expedite the drug development process. In this study, we evaluated the cytotoxic effect of terfenadine on Giardia lamblia trophozoites. Our results showed that terfenadine inhibited the growth and cell viability of Giardia trophozoites in a time-dose-dependent manner. In addition, using scanning electron microscopy, we identified morphological damage; interestingly, an increased number of protrusions on membranes and tubulin dysregulation with concomitant dysregulation of Giardia GiK were observed. Importantly, terfenadine showed low toxicity for Caco-2 cells, a human intestinal cell line. These findings highlight the potential of terfenadine as a repurposed drug for the treatment of giardiasis and warrant further investigation to elucidate its precise mechanism of action and evaluate its efficacy in future research.

14.
Foods ; 12(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37509873

ABSTRACT

Bread is a widely consumed food that has often been used as a vehicle for functional ingredients such as dietary fibre. Fibre-rich breads have beneficial physiological effects on health, helping to combat chronic pathologies such as cardiovascular disease, diabetes, and certain types of colon cancer. The aim of this study is to evaluate the technological and nutritional effects of the inclusion of buckwheat hull particles (BH) at two addition levels (3 and 6%) and two particle sizes (fine, D50: 62.7 µm; coarse, D50: 307 µm) in a gluten-free (GF) bread formulation. A significant (p < 0.05) increase in the dough elastic modulus (G') was observed for all doughs containing BH, from 712 Pa for a rice-based dough to 1027-3738 Pa for those containing BH. Compared to rice-based breads, those containing BH showed a significant (p < 0.05) increase in total dietary fibre content (from three to five times) and in antioxidant capacity (from 78 to 290 mg TE/100 g dw. in the ORAC test). Breads containing fine BH at a level of 3% had similar sensory properties to the rice-based bread, demonstrating that it is possible to improve the TDF content while maintaining the sensory quality of the GF bread.

15.
Bioessays ; 45(10): e2200239, 2023 10.
Article in English | MEDLINE | ID: mdl-37350339

ABSTRACT

The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.


Subject(s)
Enhancer Elements, Genetic , Neoplasms , Humans , Animals , Mice , Enhancer Elements, Genetic/genetics , Histones/genetics , Histones/metabolism , Promoter Regions, Genetic/genetics , Histone Code/genetics , Neoplasms/genetics
16.
J Dairy Res ; 90(2): 124-131, 2023 May.
Article in English | MEDLINE | ID: mdl-37154291

ABSTRACT

Our objective was to study the effect of increasing postruminal supply of linseed oil (L-oil), as a source of cis-9, cis-12, cis-15 18:3, on milk fatty acid profile and to assess the resulting impact on the development of volatile degradation products during the storage of homogenized milk. Five Holstein dairy cows fitted with a rumen cannula were randomly distributed in a 5 × 5 Latin square design. Abomasal infusion of L-oil was performed at the rate of 0, 75, 150, 300, and 600 ml/d during periods of 14 d. The concentration of cis-9, cis-12, cis-15 18:3 in milk fat increased linearly with L-oil dose. Concentrations of primary (conjugated diene and triene hydroperoxides) and secondary oxidation products (1-octen-3-one, propanal, hexanal, trans-2 + cis-3-hexenals, cis-4-heptenal, trans-2, cis-6-nonadienal trans-2, trans-4-nonadienal) increased during 11 d of storage at 4°C of homogenized milk under fluorescent light. The magnitude of the increase (difference between final and initial measurements) was linearly greater for all nine lipid oxidation products evaluated in response to increasing level of infusion. Results of the current experiment have shown that milk enriched in cis-9, cis-12, cis-15 18:3 via postruminal supply of L-oil is highly prone to oxidative degradation. This low oxidative stability, exposed under controlled experimental conditions, would represent a major obstacle to those who aim to market milk enriched in polyunsaturated fatty acids.


Subject(s)
Fatty Acids , Milk , Female , Cattle , Animals , Milk/metabolism , Fatty Acids/metabolism , Linseed Oil/metabolism , Lactation/physiology , Diet/veterinary , Oxidative Stress
17.
Dig Surg ; 40(3-4): 108-113, 2023.
Article in English | MEDLINE | ID: mdl-37231840

ABSTRACT

INTRODUCTION: This study aimed to evaluate the use of laparoscopic cholecystectomy (LC) operative time (CholeS score) and conversion to an open procedure (CLOC score) outside their validation dataset in Mexican population. METHODS: Patients >18 years who underwent elective LC were analyzed in a single-center retrospective chart review study. Association between scores (CholeS and CLOC) with operative time and conversion to open procedures was assessed with Spearman correlation. The predictive accuracy of the CholeS score and CLOC score was evaluated by receiver operator characteristic. RESULTS: 200 patients were included in the study (33 excluded for emergency case or missing data). Spearman coefficient correlations between CholeS or CLOC score and operative time were 0.456 (p < 0.0001) and 0.356 (p < 0.0001), respectively. Area under the curve (AUC) for operative prediction time (>90 min) by CholeS score was 0.786 with a 3.5-point cutoff (80% sensitivity and 63.2% specificity). AUC for open conversion (CLOC score) was 0.78 with a 5-point cutoff (60% sensitivity and 91% specificity). The CLOC score had a 0.740 AUC (64% sensitivity and 72.8% specificity) for operative time >90 min. CONCLUSIONS: The CholeS and the CLOC scores predicted LC long operative time and risk for conversion to an open procedure, respectively, outside their original validation set.


Subject(s)
Cholecystectomy, Laparoscopic , Humans , Cholecystectomy, Laparoscopic/methods , Retrospective Studies , Operative Time , Conversion to Open Surgery
18.
J Dairy Res ; 90(2): 118-123, 2023 May.
Article in English | MEDLINE | ID: mdl-37138530

ABSTRACT

Triacylglycerols (TAG) are the primary sources of preformed fatty acids (FA) for lipid synthesis in the mammary gland. However, polyunsaturated FA escaping ruminal biohydrogenation are selectively incorporated into cholesterol esters (CE) and phospholipids (PL). The aim of the current experiment was to study the effects of abomasal infusion of increasing amount of linseed oil (L-oil) on plasma distribution of α-linolenic acid (α-LA) and its transfer efficiency into milk fat. Five rumen-fistulated Holstein cows were randomly distributed in a 5 × 5 Latin square design. Abomasal infusion of L-oil (55.9% α-LA) was performed at the rate of 0, 75, 150, 300, and 600 ml/d. Concentrations of α-LA increased quadratically in TAG, PL, and CE; a less steep slope was observed with an inflexion at an infusion rate of 300 ml L-oil per day. The increase in plasma concentration of α-LA was of a lower magnitude in CE as compared with the other two fractions, resulting in a quadratic decrease in relative proportion of this FA circulating as CE. The transfer efficiency into milk fat increased from 0 to 150 ml L-oil infused, and a plateau was maintained thereafter with greater levels of infusion (quadratic response). This pattern resembles the quadratic response of the relative proportion of α-LA circulating as TAG, and the relative concentration of this FA in TAG. Increasing the postruminal supply of α-LA partly overcame the segregation mechanism of absorbed polyunsaturated FA in different plasma lipid classes. Proportionately more α-LA was then esterified as TAG, at the expense of CE, increasing its efficiency of transfer into milk fat. This mechanism appears to be surpassed in its turn when L-oil infusion was increased over 150 ml/d. Nevertheless, the yield of α-LA in milk fat continued to increase, but at a slower rate at the highest levels of infusion.


Subject(s)
Linseed Oil , alpha-Linolenic Acid , Female , Cattle , Animals , Milk , Lactation/physiology , Fatty Acids , Fatty Acids, Unsaturated/pharmacology , Phospholipids , Diet/veterinary , Rumen
19.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108599

ABSTRACT

Previous studies demonstrated that enzymatic hydrolysis enhances wheat bran (WB) biological properties. This study evaluated the immunostimulatory effect of a WB hydrolysate (HYD) and a mousse enriched with HYD (MH) before and after in vitro digestion on murine and human macrophages. The antiproliferative activity of the harvested macrophage supernatant on colorectal cancer (CRC) cells was also analyzed. MH showed significantly higher content than control mousse (M) in soluble poly- and oligosaccharides (OLSC), as well as total soluble phenolic compounds (TSPC). Although in vitro gastrointestinal digestion slightly reduced the TSPC bioaccessibility of MH, ferulic acid (FA) levels remained stable. HYD showed the highest antioxidant activity followed by MH, which demonstrated a greater antioxidant activity before and after digestion as compared with M. RAW264.7 and THP-1 cells released the highest amounts of pro-inflammatory cytokines after being treated with 0.5 mg/mL of digested WB samples. Treatment with digested HYD-stimulated RAW264.7 supernatant for 96 h showed the most anticancer effect, and spent medium reduced cancer cell colonies more than direct WB sample treatments. Although a lack of inner mitochondrial membrane potential alteration was found, increased Bax:Bcl-2 ratio and caspase-3 expression suggested activation of the mitochondrial apoptotic pathway when CRC cells were treated with macrophage supernatants. Intracellular reactive oxygen species (ROS) were positively correlated with the cell viability in CRC cells exposed to RAW264.7 supernatants (r = 0.78, p < 0.05) but was not correlated in CRC cells treated with THP-1 conditioned media. Supernatant from WB-stimulated THP-1 cells may be able to stimulate ROS production in HT-29 cells, leading to a decrease of viable cells in a time-dependent manner. Therefore, our present study revealed a novel anti-tumour mechanism of HYD through the stimulation of cytokine production in macrophages and the indirect inhibition of cell proliferation, colony formation, and activation of pro-apoptotic proteins expression in CRC cells.


Subject(s)
Antioxidants , Dietary Fiber , Humans , Mice , Animals , Antioxidants/pharmacology , Dietary Fiber/pharmacology , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Cell Proliferation , Apoptosis
20.
Nucleic Acids Res ; 51(10): e55, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37021559

ABSTRACT

Most cell type-specific genes are regulated by the interaction of enhancers with their promoters. The identification of enhancers is not trivial as enhancers are diverse in their characteristics and dynamic in their interaction partners. We present Esearch3D, a new method that exploits network theory approaches to identify active enhancers. Our work is based on the fact that enhancers act as a source of regulatory information to increase the rate of transcription of their target genes and that the flow of this information is mediated by the folding of chromatin in the three-dimensional (3D) nuclear space between the enhancer and the target gene promoter. Esearch3D reverse engineers this flow of information to calculate the likelihood of enhancer activity in intergenic regions by propagating the transcription levels of genes across 3D genome networks. Regions predicted to have high enhancer activity are shown to be enriched in annotations indicative of enhancer activity. These include: enhancer-associated histone marks, bidirectional CAGE-seq, STARR-seq, P300, RNA polymerase II and expression quantitative trait loci (eQTLs). Esearch3D leverages the relationship between chromatin architecture and transcription, allowing the prediction of active enhancers and an understanding of the complex underpinnings of regulatory networks. The method is available at: https://github.com/InfOmics/Esearch3D and https://doi.org/10.5281/zenodo.7737123.


Subject(s)
Chromatin , Enhancer Elements, Genetic , Software , Chromatin/genetics , Gene Expression , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...