Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Inform ; 38(6): e1800171, 2019 06.
Article in English | MEDLINE | ID: mdl-30861311

ABSTRACT

Molecular acid/base properties have a significant influence on membrane permeation, metabolism, absorption, and affinity for biological targets. In particular, ionizable groups are critical in the strength of target-molecule interactions, pharmacokinetics, and toxicity. In this study, we estimated the acid/base properties of the food chemicals from FooDB, a public compound collection with more than 22,000 compounds. It was found that the food chemicals have 40.9 % of neutral compounds, which is twice as many as that found in approved drugs. The most common functional groups among the acid groups in the food chemicals were phenols (16.1 %), phosphates (17.3 %), and carboxylates (17.3 %) while the single-base-containing compounds were of less interest as they accounted for just 5.5 %. To the best of our knowledge, this is the first systematic acid/base profiling of food chemicals and it is part of a continued effort to profile food chemicals for their broad interest in several areas such as nutrition and the food industry in general.


Subject(s)
Carboxylic Acids/analysis , Databases, Pharmaceutical , Food Contamination/analysis , Phenols/analysis , Phosphates/analysis , Hydrogen-Ion Concentration
2.
F1000Res ; 72018.
Article in English | MEDLINE | ID: mdl-30135721

ABSTRACT

Background: Food chemicals are a cornerstone in the food industry. However, its chemical diversity has been explored on a limited basis, for instance, previous analysis of food-related databases were done up to 2,200 molecules. The goal of this work was to quantify the chemical diversity of chemical compounds stored in FooDB, a database with nearly 24,000 food chemicals. Methods: The visual representation of the chemical space of FooDB was done with ChemMaps, a novel approach based on the concept of chemical satellites. The large food chemical database was profiled based on physicochemical properties, molecular complexity and scaffold content. The global diversity of FoodDB was characterized using Consensus Diversity Plots. Results: It was found that compounds in FooDB are very diverse in terms of properties and structure, with a large structural complexity. It was also found that one third of the food chemicals are acyclic molecules and ring-containing molecules are mostly monocyclic, with several scaffolds common to natural products in other databases. Conclusions: To the best of our knowledge, this is the first analysis of the chemical diversity and complexity of FooDB. This study represents a step further to the emerging field of "Food Informatics". Future study should compare directly the chemical structures of the molecules in FooDB with other compound databases, for instance, drug-like databases and natural products collections.


Subject(s)
Databases, Pharmaceutical , Food , Chemical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...