Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 158(6): 1955-9, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11395371

ABSTRACT

We recently identified activating mutations of fibroblast growth factor receptor 3 (FGFR3) in bladder carcinoma. In this study we assessed the incidence of FGFR3 mutations in a series of 132 bladder carcinomas: 20 carcinoma in situ (CIS), 50 pTa, 19 pT1, and 43 pT2-4. All 48 mutations identified were identical to the germinal activating mutations that cause thanatophoric dysplasia, a lethal form of dwarfism. The S249C mutation, found in 33 of the 48 mutated tumors, was the most common. The frequency of mutations was higher in pTa tumors (37 of 50, 74%) than in CIS (0 of 20, 0%; P < 0.0001), pT1 (4 of 19, 21%; P < 0.0001) and pT2-4 tumors (7 of 43, 16%; P < 0.0001). FGFR3 mutations were detected in 27 of 32 (84%) G1, 16 of 29 (55%) G2, and 5 of 71 (7%) G3 tumors. This association between FGFR3 mutations and low grade was highly significant (P < 0.0001). FGFR3 is the first gene found to be mutated at a high frequency in pTa tumors. The absence of FGFR3 mutations in CIS and the low frequency of FGFR3 mutations in pT1 and pT2-4 tumors are consistent with the model of bladder tumor progression in which the most common precursor of pT1 and pT2-4 tumors is CIS.


Subject(s)
Carcinoma in Situ/genetics , Carcinoma, Papillary/genetics , Point Mutation , Protein-Tyrosine Kinases , Receptors, Fibroblast Growth Factor/genetics , Urinary Bladder Neoplasms/genetics , Carcinoma in Situ/pathology , Carcinoma, Papillary/pathology , Humans , Receptor, Fibroblast Growth Factor, Type 3 , Urinary Bladder Neoplasms/pathology
2.
Oncogene ; 18(51): 7234-43, 1999 Dec 02.
Article in English | MEDLINE | ID: mdl-10602477

ABSTRACT

FGFRs (fibroblast growth factor receptors) are encoded by four genes (FGFR1-4). Alternative splicing results in various receptor isoforms. The FGFR2-IIIb variant is present in a wide variety of epithelia, including the bladder epithelium. Recently, we have shown that FGFR2-IIIb is downregulated in a subset of transitional cell carcinomas of the bladder, and that this downregulation is associated with a poor prognosis. We investigated possible tumour suppressive properties of FGFR2-IIIb by transfecting two human bladder tumour cell lines, J82 and T24, which have no endogenous FGFR2-IIIb expression, with FGFR2-IIIb cDNA. No stable clones expressing FGFR2-IIIb were isolated with the J82 cell line. For the T24 cell line, stable transfectants expressing FGFR2-IIIb had reduced growth in vitro and formed fewer tumours in nude mice which, in addition, grew more slowly. The potential mechanisms leading to decreased FGFR2-IIIb mRNA levels were also investigated. The 5' region of the human FGFR2 gene was isolated and found to contain a CpG island which was partially methylated in more than half the cell lines and tumours which do not express FGFR2-IIIb. No homozygous deletion was identified in any of the tumours or cell lines with reduced levels of FGFR2-IIIb. Mutational analysis of the entire coding region of FGFR2-IIIb at the transcript level was performed in 33 bladder tumours. In addition to normal FGFR2-IIIb mRNA, abnormal transcripts were detected in two tumour samples. These abnormal mRNAs resulted from exon skipping which affected the region encoding the kinase domain. Altogether, these results show that FGFR2-IIIb has tumour growth suppressive properties in bladder carcinomas and suggest possible mechanisms of FGFR2 gene inactivation.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Fibroblast Growth Factor/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Animals , Base Sequence , Cell Differentiation/genetics , Cell Division/genetics , Humans , Mice , Molecular Sequence Data , Receptor, Fibroblast Growth Factor, Type 2 , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...