Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 78(12): 1117-26, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12556339

ABSTRACT

PURPOSE: To study chromosomal radiosensitivity in a population of radiation workers and investigate the possibility of an adaptive response in lymphocytes of workers after short-term occupational exposure to ionizing radiation. MATERIALS AND METHODS: The studied group comprised 41 workers temporarily employed at the Nuclear Power Plant Doel (Belgium) for reactor maintenance. A blood sample was taken before and directly after the exposure period of about 1 month. Chromosomal radiosensitivity was assessed in vitro by the G2 assay and the G0 micronucleus (MN) assay. For the MN assay, a low dose-rate (LDR) in vitro irradiation protocol was applied in addition to high dose-rate (HDR) irradiation of the blood samples in order to determine the dose-rate sparing (DRS) effect. RESULTS: No statistically significant effect of the occupational exposures (up to 10 mSv) on the baseline MN frequencies without in vitro irradiation was observed. A comparison of the number of chromatid aberrations pre- and post-exposure shows no effect of the occupational exposure. On the other hand, the G0-MN assay with the LDR irradiation protocol reveals a systematic reduction in chromosomal radiosensitivity by the exposure, increasing with dose. For workers who received the highest dose (4-10 mSv) a statistically significant (p <0.05) decrease of the in vitro induced MN yields and increase of the dose-rate sparing was observed. CONCLUSIONS: Short-term low-dose occupational exposure may act as an in vivo adaptive dose and stimulate repair in G0 lymphocytes.


Subject(s)
Chromosomes/radiation effects , Chromosomes/ultrastructure , Occupational Exposure/adverse effects , Power Plants , Adolescent , Adult , Dose-Response Relationship, Radiation , Humans , Micronucleus Tests , Middle Aged , Mutagenicity Tests , Radiation Dosage , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...