Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848282

ABSTRACT

Gatemon qubits are the electrically tunable cousins of superconducting transmon qubits. In this work, we demonstrate the full coherent control of a gatemon qubit based on hole carriers in a Ge/Si core/shell nanowire, with the longest coherence times in group IV material gatemons to date. The key to these results is a high-quality Josephson junction obtained using a straightforward and reproducible annealing technique. We demonstrate that the transport through the narrow junction is dominated by only two quantum channels, with transparencies up to unity. This novel qubit platform holds great promise for quantum information applications, not only because it incorporates technologically relevant materials, but also because it provides new opportunities, like an ultrastrong spin-orbit coupling in the few-channel regime of Josephson junctions.

2.
Nano Lett ; 20(1): 122-130, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31771328

ABSTRACT

We show a hard superconducting gap in a Ge-Si nanowire Josephson transistor up to in-plane magnetic fields of 250 mT, an important step toward creating and detecting Majorana zero modes in this system. A hard gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at 180 °C during which aluminum interdiffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (TC = 0.9 K) and a higher critical field (BC = 0.9-1.2 T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (TC = 2.9 K) and critical field (BC = 3.4 T) is found. The small size of these diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction.

3.
Phys Rev Lett ; 123(2): 026802, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386548

ABSTRACT

One of the consequences of Cooper pairs having a finite momentum in the interlayer of a Josephson junction is π-junction behavior. The finite momentum can either be due to an exchange field in ferromagnetic Josephson junctions, or due to the Zeeman effect. Here, we report the observation of Zeeman-effect-induced 0-π transitions in Bi_{1-x}Sb_{x}, three-dimensional Dirac semimetal-based Josephson junctions. The large in-plane g factor allows tuning of the Josephson junctions from 0 to π regimes. This is revealed by measuring a π phase shift in the current-phase relation measured with an asymmetric superconducting quantum interference device (SQUID). Additionally, we directly measure a nonsinusoidal current-phase relation in the asymmetric SQUID, consistent with models for ballistic Josephson transport.

4.
Adv Mater ; 30(44): e1802257, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30260519

ABSTRACT

A Ge-Si core-shell nanowire is used to realize a Josephson field-effect transistor with highly transparent contacts to superconducting leads. By changing the electric field, access to two distinct regimes, not combined before in a single device, is gained: in the accumulation mode the device is highly transparent and the supercurrent is carried by multiple subbands, while near depletion, the supercurrent is carried by single-particle levels of a strongly coupled quantum dot operating in the few-hole regime. These results establish Ge-Si nanowires as an important platform for hybrid superconductor-semiconductor physics and Majorana fermions.

5.
Nano Lett ; 18(10): 6483-6488, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30192147

ABSTRACT

Low dimensional semiconducting structures with strong spin-orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protection of the predicted Majorana bound states. Here we explore the one-dimensional hole gas in germanium silicon (Ge-Si) core-shell nanowires (NWs) as a new material candidate for creating a topological superconductor. Fitting multiple Andreev reflection measurements shows that the NW has two transport channels only, underlining its one-dimensionality. Furthermore, we find anisotropy of the Landé g-factor that, combined with band structure calculations, provides us qualitative evidence for the direct Rashba SOI and a strong orbital effect of the magnetic field. Finally, a hard superconducting gap is found in the tunneling regime and the open regime, where we use the Kondo peak as a new tool to gauge the quality of the superconducting gap.

SELECTION OF CITATIONS
SEARCH DETAIL
...