Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Benef Microbes ; 11(5): 457-468, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32865026

ABSTRACT

Pulses are dry leguminous crops consisting of beans, lentils, chickpeas, and peas. They are a broad category of food that are often aggregated when their contribution to healthy dietary patterns are disseminated. However, the different genera and varieties of pulses vary in composition and are consumed in different amounts, largely dictated by geographic region and ethnicity. Given the number of pulse-derived components, including fibre, that have the capacity to alter the composition of the gut microbiome, the objective of this study was to systematically review dietary pulses and pulse-derived ingredients as a broader food group, to determine their effect on gut microbiota in humans. Major scientific databases were used to conduct the search, which spanned from 1990 until February 2019. The search strategy identified 2,444 articles and five studies were included in this analysis. Two studies used whole pulses (chickpeas and pinto beans), one study used cooked navy bean powder, and the two remaining studies used pulse-derived fibre (lupin or yellow pea hulls). Although inconsistent, some studies demonstrated that whole pulses (pinto beans and chickpeas), cooked navy bean powder, and pulse-derived fibre (lupin kernel fibre), did impose changes to the microbiota that inhabit the human large intestine. However, there was considerable variability concerning the methodologies and endpoints used to decipher the observed effects on the abundance, diversity, and/or richness of specific microbiota or the microbiome. More extensive human studies that directly link the effects of specific types of pulses on the gastrointestinal microbial environment to health outcomes in the host are required.


Subject(s)
Diet , Dietary Fiber/metabolism , Fabaceae , Gastrointestinal Microbiome , Crops, Agricultural/metabolism , Feces/microbiology , Female , Humans , Male , RNA, Ribosomal, 16S/genetics , Randomized Controlled Trials as Topic , Vegetables
2.
J Anim Sci ; 92(9): 3906-13, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25057032

ABSTRACT

The aim was to evaluate the effects of feeding resistant potato starch (RPS) as a natural source of resistant starch to weaned pigs for 28 d immediately after weaning. Sixty piglets (Yorkshire-Landrace × Duroc) weaned at 21 ± 2 d (1:1 male:female) with an initial BW of 7.2 ± 0.78 kg were assigned in a completely randomized design to 1 of 5 dietary treatments to give 6 observations per treatment and 2 pigs per pen. Dietary treatments consisted of a negative control corn-soybean meal-wheat-wheat middlings-based diet (NC; no antimicrobial agents added) or the NC supplemented with RPS either as powder or in capsules and each included at 0.5 or 1.0% as a top-dressing on each day. Diets were formulated to meet 1998 NRC specifications. Pigs were offered the experimental diets on an ad libitum basis for 28 d and water was available at all times. The ADG, ADFI, and G:F were determined weekly. Fecal score was determined daily for 14 d after weaning. At the conclusion of study, 1 pig from each pen was randomly selected and euthanized (n = 6 per treatment) to determine visceral organ weight, digesta pH, VFA, and ammonia N (NH3-N) concentrations. Resistant potato starch supplementation improved (P < 0.001) fecal score, and pigs offered 1.0% RPS had more solid feces (P < 0.05) than those offered 0.5% RPS during the first 14 d after weaning, independent of the form of RPS. Resistant potato starch supplementation decreased (P < 0.05) ileal and cecal digesta pH regardless of the levels of RPS or mode of delivery. The total VFA concentrations in cecal digesta were greater (P < 0.05) but the molar proportion of branched-chain fatty acids were lower (P < 0.05) for pigs fed the RPS-containing diets compared with those fed the NC, irrespective of the RPS levels or the form of RPS. However, there were no differences (P > 0.10) in visceral organ weights, growth performance, and digestibilities of DM, CP, Ca, and P among treatments. The results of this experiment indicate that supplementing a weaner pig diet with at least 0.5% RPS independent of mode of delivery has the potential to enhance outcomes characteristic of a functional gut in weaned pigs without adverse effects on growth.


Subject(s)
Animal Feed/analysis , Dietary Supplements , Gastrointestinal Tract/drug effects , Solanum tuberosum , Starch/pharmacology , Swine/growth & development , Animal Nutritional Physiological Phenomena/drug effects , Animal Nutritional Physiological Phenomena/physiology , Animals , Cecum/drug effects , Cecum/physiology , Feces , Female , Gastrointestinal Tract/physiology , Ileum/drug effects , Ileum/physiology , Male , Organ Size/drug effects , Organ Size/physiology , Random Allocation , Solanum tuberosum/chemistry , Starch/administration & dosage , Starch/analysis , Swine/physiology , Weight Gain/drug effects , Weight Gain/physiology
3.
J Anim Sci ; 86(14 Suppl): E36-50, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17998426

ABSTRACT

The mammalian target of rapamycin (mTOR) plays key roles in cellular metabolism and hypertrophic-hyperplasic growth, and it acts as a central regulator of protein synthesis and ribosome biogenesis at the transcriptional and translational levels by sensing and integrating signals from mitogens and nutrients. Hormonal and stress factors can affect the mTOR-signaling pathway via their receptors and signal transduction pathways. Nutritional regulation of the mTOR-signaling pathway is mediated by their corresponding plasma membrane transporters, other unknown mechanisms, or both. Adenine monophosphate-activated protein kinase, an important cellular energy sensor, can interact with the mTOR-signaling pathway to maintain cellular energy homeostasis. Interactions of mTOR with regulatory-associated protein of TOR or rapamycin-insensitive companion of mTOR result in 2 mTOR complexes, with the former (mTOR complex-1) being the primary controller of cell growth and the latter (mTOR complex-2) mediating effects that are insensitive to rapamycin, such as cytoskeletal organization. Upstream elements of the mTOR-signaling pathway include Ras-homolog enriched in brain, and tuberous sclerosis complex 1 and 2, with tuberous sclerosis complex 2 as the linker between phosphatidylinositol 3-kinase/protein kinase B or Ras-Raf-mitogen-activated protein kinase-extracellular signal-regulated protein kinase pathways and the mTOR pathway. Ribosomal protein S6 protein kinase 1 and eukaryotic initiation factor 4E binding protein 1 are currently the 2 best-known downstream effectors of mTOR signaling. Hormonal factors, stressors, and nutrients can differentially mediate cellular metabolism and growth via the mTOR pathway with effectors specific to the organ or tissue types involved.


Subject(s)
Amino Acids/metabolism , Protein Kinases/metabolism , Signal Transduction/physiology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Growth Substances , TOR Serine-Threonine Kinases
4.
J Anim Sci ; 82(6): 1678-84, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15216994

ABSTRACT

The excretion of major odor-causing and acidifying compounds in response to dietary supplementation of chicory inulin extract was investigated with six Yorkshire barrows, with an average initial BW of 30 kg, according to a balanced two-period cross-over design. The animals were fed a control diet containing no inulin extract and a treatment diet with 5% inulin extract (as-fed basis) at the expense of cornstarch. Each diet was formulated (as-fed basis) to contain 16% CP from corn (51%) and soybean meal (29%). Each experimental period lasted 14 d, with 10 d for dietary adaptation and 4 d for collection of fecal and urine samples. The fecal samples were analyzed for four major classes of odor-causing and acidifying compounds: 1) VFA; 2) N-containing compounds, including total N and ammonia; 3) volatile sulfides measured as hydrogen sulfide units; and 4) phenols and indoles, including p-cresol, indole, and skatole. Supplementation of chicory inulin at 5% had no effects on the fecal excretion of VFA (P = 0.29), ammonia (P = 0.96), total volatile sulfides (P = 0.56), p-cresol (P = 0.56), and indole (P = 0.75). Fecal excretion of total N (inulin = 6.13 vs. control = 5.10 g/kg DMI) was increased (P < 0.05), whereas urinary total N excretion (inulin = 15.1 vs. control = 16.4 g/[pig x d]) was not affected (P = 0.17) by the inulin supplementation compared with the control group. Furthermore, fecal excretion of skatole (inulin = 9.07 vs. control = 18.93 mg/kg DMI) was decreased (P < 0.05) by the inulin supplementation compared with the control group. In conclusion, dietary supplementation of 5% chicory inulin extract is effective in decreasing the fecal excretion of skatole in growing pigs fed corn and soybean meal diets.


Subject(s)
Cichorium intybus , Inulin/metabolism , Odorants/prevention & control , Swine/metabolism , Ammonia/metabolism , Ammonia/urine , Animal Feed , Animals , Cross-Over Studies , Dietary Supplements , Fatty Acids, Volatile/biosynthesis , Feces/chemistry , Inulin/administration & dosage , Male , Nitrogen/metabolism , Nitrogen/urine , Phenols/metabolism , Phenols/urine , Random Allocation , Skatole/metabolism , Swine/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...