Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanophotonics ; 13(14): 2453-2467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836102

ABSTRACT

We provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field. We provide formulae for the upper limit of the splitting in terms of the molar absorption coefficient, the attenuation coefficient, the extinction coefficient (imaginary part of the refractive index) and the absorbance. To illustrate this approach, we provide a number of examples, and we also discuss some of the limitations of our approach.

2.
Phys Rev Lett ; 131(12): 126902, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37802963

ABSTRACT

Strong coupling of molecular vibrations with light creates polariton states, enabling control over many optical and chemical properties. However, the near-field signatures of strong coupling are difficult to map as most cavities are closed systems. Surface-enhanced Raman microscopy of open metallic gratings under vibrational strong coupling enables the observation of spatial polariton localization in the grating near field, without the need for scanning probe microscopies. The lower polariton is localized at the grating slots, displays a strongly asymmetric line shape, and gives greater plasmon-vibration coupling strength than measured in the far field. Within these slots, the local field strength pushes the system into the ultrastrong coupling regime. Models of strong coupling which explicitly include the spatial distribution of emitters can account for these effects. Such gratings enable exploration of the rich physics of polaritons, its impact on polariton chemistry under flow conditions, and the interplay between near- and far-field properties through vibrational polariton-enhanced Raman scattering.

3.
Nanophotonics ; 11(16): 3695-3708, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36061948

ABSTRACT

The strong coupling of molecules with surface plasmons results in hybrid states which are part molecule, part surface-bound light. Since molecular resonances may acquire the spatial coherence of plasmons, which have mm-scale propagation lengths, strong-coupling with molecular resonances potentially enables long-range molecular energy transfer. Gratings are often used to couple incident light to surface plasmons, by scattering the otherwise non-radiative surface plasmon inside the light-line. We calculate the dispersion relation for surface plasmons strongly coupled to molecular resonances when grating scattering is involved. By treating the molecules as independent oscillators rather than the more typically considered single collective dipole, we find the full multi-band dispersion relation. This approach offers a natural way to include the dark states in the dispersion. We demonstrate that for a molecular resonance tuned near the crossing point of forward and backward grating-scattered plasmon modes, the interaction between plasmons and molecules gives a five-band dispersion relation, including a bright state not captured in calculations using a single collective dipole. We also show that the role of the grating in breaking the translational invariance of the system appears in the position-dependent coupling between the molecules and the surface plasmon. The presence of the grating is thus not only important for the experimental observation of molecule-surface-plasmon coupling, but also provides an additional design parameter that tunes the system.

4.
ACS Photonics ; 9(5): 1483-1499, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35607643

ABSTRACT

Topological nanophotonics is a new avenue for exploring nanoscale systems from visible to THz frequencies, with unprecedented control. By embracing their complexity and fully utilizing the properties that make them distinct from electronic systems, we aim to study new topological phenomena. In this Perspective, we summarize the current state of the field and highlight the use of nanoparticle systems for exploring topological phases beyond electronic analogues. We provide an overview of the tools needed to capture the radiative, retardative, and long-range properties of these systems. We discuss the application of dielectric and metallic nanoparticles in nonlinear systems and also provide an overview of the newly developed topic of topological insulator nanoparticles. We hope that a comprehensive understanding of topological nanoparticle photonic systems will allow us to exploit them to their full potential and explore new topological phenomena at very reduced dimensions.

5.
Nanoscale ; 12(44): 22817-22825, 2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33174899

ABSTRACT

Topological insulator nanoparticles (TINPs) host topologically protected Dirac surface states, just like their bulk counterparts. For TINPs of radius <100 nm, quantum confinement on the surface results in the discretization of the Dirac cone. This system of discrete energy levels is referred to as a topological quantum dot (TQD) with energy level spacing on the order of Terahertz (THz), which is tunable with material-type and particle size. The presence of these discretized energy levels in turn leads to a new electron-mediated phonon-light coupling in the THz range, and the resulting mode can be observed in the absorption cross-section of the TINPs. We present the first experimental evidence of this new quantum phenomenon in Bi2Te3 topological quantum dots, remarkably observed at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...