Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Cardiovasc Intervent Radiol ; 47(5): 613-620, 2024 May.
Article in English | MEDLINE | ID: mdl-38361010

ABSTRACT

PURPOSE: Several factors are known to affect lung ablation zones. Questions remain as to why there are discrepancies between achieved and vendor-predicted ablation zones and what contributing factors can be modified to balance therapeutic effects with avoidance of complications. This retrospective study of lung tumour microwave ablation analyses day 1 post-treatment CT to assess the effects of lesion-specific and operator-dependent factors on ablation zones. METHODS AND MATERIALS: Consecutive patients treated at a tertiary centre from 2018 to 2021 were included. All ablations were performed using a single microwave ablation device under lung isolation. The lung tumours were categorised as primary or secondary, and their "resistance" to ablation was graded according to their locations. Intraprocedural pulmonary inflation was assessed as equal to or less than the contralateral non-isolated lung. Ablation energy was categorised as high, medium, or low. Ablation zone dimensions were measured on day 1 CT and compared to vendor reference charts. Ablations with multiple needle positions or indeterminate boundaries were excluded. RESULTS: A total of 47 lesions in 31 patients were analysed. Achieved long axes are longer than predicted by 5 mm or 14% (p < 0.01) without overall short axis discrepancy. Secondary tumours (p = 0.020), low-resistance location (p < 0.01), good lung inflation (p < 0.01), low (p = 0.003) and medium (p = 0.038) total energy produce lengthened long axes by 4-6 mm or 10-19%. High total energy results in shorter than predicated short axes by 6 mm or 18% (p = 0.010). CONCLUSION: We identified several factors affecting ablation zone dimensions which may have implications for ablation planning and the avoidance of complications.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Retrospective Studies , Male , Female , Aged , Middle Aged , Microwaves/therapeutic use , Lung/surgery , Lung/diagnostic imaging , Ablation Techniques/methods , Aged, 80 and over
2.
Br J Cancer ; 129(12): 1949-1955, 2023 12.
Article in English | MEDLINE | ID: mdl-37932513

ABSTRACT

BACKGROUND: Methods to improve stratification of small (≤15 mm) lung nodules are needed. We aimed to develop a radiomics model to assist lung cancer diagnosis. METHODS: Patients were retrospectively identified using health records from January 2007 to December 2018. The external test set was obtained from the national LIBRA study and a prospective Lung Cancer Screening programme. Radiomics features were extracted from multi-region CT segmentations using TexLab2.0. LASSO regression generated the 5-feature small nodule radiomics-predictive-vector (SN-RPV). K-means clustering was used to split patients into risk groups according to SN-RPV. Model performance was compared to 6 thoracic radiologists. SN-RPV and radiologist risk groups were combined to generate "Safety-Net" and "Early Diagnosis" decision-support tools. RESULTS: In total, 810 patients with 990 nodules were included. The AUC for malignancy prediction was 0.85 (95% CI: 0.82-0.87), 0.78 (95% CI: 0.70-0.85) and 0.78 (95% CI: 0.59-0.92) for the training, test and external test datasets, respectively. The test set accuracy was 73% (95% CI: 65-81%) and resulted in 66.67% improvements in potentially missed [8/12] or delayed [6/9] cancers, compared to the radiologist with performance closest to the mean of six readers. CONCLUSIONS: SN-RPV may provide net-benefit in terms of earlier cancer diagnosis.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Prospective Studies , Retrospective Studies , Radiologists , Lung
3.
ERJ Open Res ; 9(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-36751674

ABSTRACT

In situ pulmonary arterial thrombosis in COVID-19 is not visible on CTPA. However, the presence of CT-measured right heart and pulmonary artery dilatation in COVID-19 is likely attributable to this process and may be a possible surrogate for its detection. https://bit.ly/3g7z5TV.

4.
Br J Radiol ; 96(1141): 20220191, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36193768

ABSTRACT

OBJECTIVES: To compare the experience of COVID-protected and mixed cohort pathways in COVID-19 transmission at a tertiary referral hospital for elective CT-guided lung biopsy and ablation during the COVID-19 pandemic. METHODS: From September 2020 to August 2021, patients admitted for elective thoracic intervention were treated at a tertiary hospital (Site 1). Site 1 received patients for extracorporeal membrane oxygenation (ECMO) and invasive ventilation in the treatment of COVID-19. Shared imaging, theater, and hallway facilities were used.From April 2020 to August 2020, patients admitted for elective thoracic intervention were treated at a COVID-protected hospital (Site 2). No patients with suspected or confirmed COVID-19 were treated at Site 2.Patients were surveyed for clinical and laboratory signs of COVID-19 infection up to 30 days post-procedure. RESULTS: At Sites 1 and 2, patients (2.4%) were tested positive for COVID-19 at 10 and 14 days post-procedure.At Site 2, there were no COVID-19 positive cases within 30 days of undergoing elective thoracic intervention. CONCLUSION: A mixed-site method for infection control could represent a pragmatic approach to the management of elective procedures during the COVID-19 pandemic or for similar illnesses. ADVANCES IN KNOWLEDGE: Mixed-cohort infection control is possible in the prevention of nosocomial COVID-19 infection.


Subject(s)
COVID-19 , Lung Neoplasms , Humans , Pandemics/prevention & control , SARS-CoV-2 , Cohort Studies , Lung Neoplasms/diagnostic imaging
5.
J Thorac Imaging ; 38(2): 104-112, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36162074

ABSTRACT

PURPOSE: To assess if dual-energy computed tomographic pulmonary angiography (DECTPA) derived lobar iodine quantification can provide an accurate estimate of lobar perfusion in patients with severe emphysema, and offer an adjunct to single-photon emission CT perfusion scintigraphy (SPECT-PS) in assessing suitability for lung volume reduction (LVR). MATERIALS AND METHODS: Patients with severe emphysema (forced expiratory volume in 1 s <49% predicted) undergoing evaluation for LVR between May 2018 and April 2020 imaged with both SPECT-PS and DECTPA were included in this retrospective study. DECTPA perfused blood volume maps were automatically segmented and lobar iodine mass was estimated and compared with lobar technetium (Tc99m) distribution acquired with SPECT-PS. Pearson correlation and Bland-Altman analysis were used for intermodality comparison between DECTPA and SPECT-PS. Univariate and adjusted multivariate linear regression were modelled to ascertain the effect sizes of possible confounders of disease severity, sex, age, and body mass index on the relationship between lobar iodine and Tc99m values. Effective radiation dose and adverse reactions were recorded. RESULTS: In all, 123 patients (64.5±8.8 y, 71 men; mean predicted forced expiratory volume in 1 s 32.1 ±12.7%,) were eligible for inclusion. There was a linear relationship between lobar perfusion values acquired using DECTPA and SPECT-PS with statistical significance ( P <0.001). Lobar relative perfusion values acquired using DECTPA and SPECT-PS had a consistent relationship both by linear regression and Bland-Altman analysis (mean bias, -0.01, mean r2 0.64; P <0.0001). Individual lobar comparisons demonstrated moderate correlation ( r =0.79, 0.78, 0.84, 0.78, 0.8 for the right upper, middle, lower, left upper, and lower lobes, respectively, P <0.0001). The relationship between lobar iodine and Tc99m values was not significantly altered after controlling for confounders including symptom and disease severity, age, sex, and body mass index. CONCLUSIONS: DECTPA provides an accurate estimation of lobar perfusion, showing good agreement with SPECT-PS and could potentially streamline preoperative assessment for LVR.


Subject(s)
Emphysema , Pulmonary Emphysema , Male , Humans , Pneumonectomy , Retrospective Studies , Pulmonary Emphysema/surgery , Lung/surgery , Emphysema/surgery , Perfusion , Angiography
6.
ERJ Open Res ; 8(4)2022 Oct.
Article in English | MEDLINE | ID: mdl-36447736

ABSTRACT

A novel iodine perfusion score correlates with breathlessness and D LCO in patients post-#COVID19 without obvious interstitial disease on CT, suggesting that lung perfusion assessment may be useful in patients without another cause of dyspnoea https://bit.ly/3U6E2f5.

10.
NPJ Prim Care Respir Med ; 31(1): 36, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099737

ABSTRACT

Regional lung cancer screening (LCS) is underway in England, involving a "lung health check" (LHC) and low-dose CT scan for those at high risk of cancer. Incidental findings from LHCs or CTs are usually referred to primary care. We describe the proportion of participants referred from the West London LCS pilot to primary care, the indications for referral, the number of general practitioner (GP) attendances and consequent changes to patient management, and provide an estimated cost-burden analysis for primary care. A small proportion (163/1542, 10.6%) of LHC attendees were referred to primary care, primarily for suspected undiagnosed chronic obstructive pulmonary disease (55/163, 33.7%) or for QRISK® (63/163, 38.7%) assessment. Ninety one of 159 (57.2%) participants consenting to follow-up attended GP appointments; costs incurred by primary care were estimated at £5.69/LHC participant. Patient management changes occurred in only 36/159 (22.6%) referred participants. LHCs result in a small increase to primary care workload provided a strict referral protocol is adhered to. Changes to patient management arising from incidental findings referrals are infrequent.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Humans , Incidental Findings , Lung , Lung Neoplasms/diagnostic imaging , Primary Health Care , Referral and Consultation , United Kingdom
11.
Crit Care Med ; 49(5): 804-815, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33470780

ABSTRACT

OBJECTIVES: Severe coronavirus disease 2019 is associated with an extensive pneumonitis and frequent coagulopathy. We sought the true prevalence of thrombotic complications in critically ill patients with severe coronavirus disease 2019 on the ICU, with or without extracorporeal membrane oxygenation. DESIGN: We undertook a single-center, retrospective analysis of 72 critically ill patients with coronavirus disease 2019-associated acute respiratory distress syndrome admitted to ICU. CT angiography of the thorax, abdomen, and pelvis were performed at admission as per routine institution protocols, with further imaging as clinically indicated. The prevalence of thrombotic complications and the relationship with coagulation parameters, other biomarkers, and survival were evaluated. SETTING: Coronavirus disease 2019 ICUs at a specialist cardiorespiratory center. PATIENTS: Seventy-two consecutive patients with coronavirus disease 2019 admitted to ICU during the study period (March 19, 2020, to June 23, 2020). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: All but one patient received thromboprophylaxis or therapeutic anticoagulation. Among 72 patients (male:female = 74%; mean age: 52 ± 10; 35 on extracorporeal membrane oxygenation), there were 54 thrombotic complications in 42 patients (58%), comprising 34 pulmonary arterial (47%), 15 peripheral venous (21%), and five (7%) systemic arterial thromboses/end-organ embolic complications. In those with pulmonary arterial thromboses, 93% were identified incidentally on first screening CT with only 7% suspected clinically. Biomarkers of coagulation (e.g., d-dimer, fibrinogen level, and activated partial thromboplastin time) or inflammation (WBC count, C-reactive protein) did not discriminate between patients with or without thrombotic complications. Fifty-one patients (76%) survived to discharge; 17 (24%) patients died. Mortality was significantly greater in patients with detectable thrombus (33% vs 10%; p = 0.022). CONCLUSIONS: There is a high prevalence of thrombotic complications, mainly pulmonary, among coronavirus disease 2019 patients admitted to ICU, despite anticoagulation. Detection of thrombus was usually incidental, not predicted by coagulation or inflammatory biomarkers, and associated with increased risk of death. Systematic CT imaging at admission should be considered in all coronavirus disease 2019 patients requiring ICU.


Subject(s)
COVID-19/complications , COVID-19/diagnostic imaging , Computed Tomography Angiography , Critical Illness , Thrombosis/diagnostic imaging , Thrombosis/etiology , Adult , Aged , Female , Humans , Intensive Care Units , Length of Stay/statistics & numerical data , Male , Middle Aged , Mortality , Patient Discharge/statistics & numerical data , Prevalence , Retrospective Studies , SARS-CoV-2
12.
J Thorac Imaging ; 36(5): W70-W88, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-32852420

ABSTRACT

Infections of the cardiovascular system may present with nonspecific symptoms, and it is common for patients to undergo multiple investigations to arrive at the diagnosis. Echocardiography is central to the diagnosis of endocarditis and pericarditis. However, cardiac computed tomography (CT) and magnetic resonance imaging also play an additive role in these diagnoses; in fact, magnetic resonance imaging is central to the diagnosis of myocarditis. Functional imaging (fluorine-18 fluorodeoxyglucose-positron emission tomography/CT and radiolabeled white blood cell single-photon emission computed tomography/CT) is useful in the diagnosis in prosthesis-related and disseminated infection. This pictorial review will detail the most commonly encountered cardiovascular bacterial and viral infections, including coronavirus disease-2019, in clinical practice and provide an evidence basis for the selection of each imaging modality in the investigation of native tissues and common prostheses.


Subject(s)
Cardiovascular Infections/diagnostic imaging , Bacterial Infections/diagnostic imaging , COVID-19/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Software Design , Virus Diseases/diagnostic imaging
15.
Lung Cancer ; 148: 12-19, 2020 10.
Article in English | MEDLINE | ID: mdl-32771715

ABSTRACT

OBJECTIVES: The West London lung screening pilot aimed to identify early-stage lung cancer by targeting low-dose CT (LDCT) to high risk participants. Successful implementation of screening requires maximising participant uptake and identifying those at highest risk. As well as reporting pre-specified baseline screening metrics, additional objectives were to 1) compare participant uptake between a mobile and hospital-based CT scanner and 2) evaluate the impact on cancer detection using two lung cancer risk models. METHODS: From primary care records, ever-smokers aged 60-75 were invited to a lung health check at a hospital or mobile site. Participants with PLCOM2012 6-yr risk ≥1.51 % and/or LLPv2 5-yr risk ≥2.0 % were offered a LDCT. Lung cancer detection rate, stage, and recall rates are reported. Participant uptake was compared at both sites (chi-squared test). LDCT eligibility and cancer detection rate were compared between those recruited under each risk model. RESULTS: Of 8366 potential participants invited, 1047/5135 (20.4 %) invitees responded to an invitation to the hospital site, and 702/3231 (21.7 %) to the mobile site (p = 0.14). The median distance travelled to the hospital site was less than to the mobile site (3.3 km vs 6.4 km, p < 0.01). Of 1159 participants eligible for a scan, 451/1159 (38.9 %) had a LLPv2 ≥2.0 % only, 71/1159 (6.1 %) had a PLCOM2012 ≥1.5 % only; 637/1159 (55.0 %) met both risk thresholds. Recall rate was 15.9 %. Lung cancer was detected in 29/1145 (2.5 %) participants scanned (stage 1, 58.6 %); 5/29 participants with lung cancer did not meet a PLCOM2012 threshold of ≥1.51 %; all had a LLPv2 ≥2.0 %. CONCLUSION: Targeted screening is effective in detecting early-stage lung cancer. Similar levels of participant uptake at a mobile and fixed site scanner were demonstrated, indicating that uptake was driven by factors in addition to scanner location. The LLPv2 model was more permissive; recruitment with PLCOM2012 alone would have missed several cancers.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Humans , London/epidemiology , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Mass Screening , Pilot Projects , Risk Assessment , Tomography, X-Ray Computed
16.
Am J Respir Crit Care Med ; 202(5): 690-699, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32667207

ABSTRACT

Rationale: Clinical and epidemiologic data in coronavirus disease (COVID-19) have accrued rapidly since the outbreak, but few address the underlying pathophysiology.Objectives: To ascertain the physiologic, hematologic, and imaging basis of lung injury in severe COVID-19 pneumonia.Methods: Clinical, physiologic, and laboratory data were collated. Radiologic (computed tomography (CT) pulmonary angiography [n = 39] and dual-energy CT [DECT, n = 20]) studies were evaluated: observers quantified CT patterns (including the extent of abnormal lung and the presence and extent of dilated peripheral vessels) and perfusion defects on DECT. Coagulation status was assessed using thromboelastography.Measurements and Results: In 39 consecutive patients (male:female, 32:7; mean age, 53 ± 10 yr [range, 29-79 yr]; Black and minority ethnic, n = 25 [64%]), there was a significant vascular perfusion abnormality and increased physiologic dead space (dynamic compliance, 33.7 ± 14.7 ml/cm H2O; Murray lung injury score, 3.14 ± 0.53; mean ventilatory ratios, 2.6 ± 0.8) with evidence of hypercoagulability and fibrinolytic "shutdown". The mean CT extent (±SD) of normally aerated lung, ground-glass opacification, and dense parenchymal opacification were 23.5 ± 16.7%, 36.3 ± 24.7%, and 42.7 ± 27.1%, respectively. Dilated peripheral vessels were present in 21/33 (63.6%) patients with at least two assessable lobes (including 10/21 [47.6%] with no evidence of acute pulmonary emboli). Perfusion defects on DECT (assessable in 18/20 [90%]) were present in all patients (wedge-shaped, n = 3; mottled, n = 9; mixed pattern, n = 6).Conclusions: Physiologic, hematologic, and imaging data show not only the presence of a hypercoagulable phenotype in severe COVID-19 pneumonia but also markedly impaired pulmonary perfusion likely caused by pulmonary angiopathy and thrombosis.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Lung/blood supply , Pneumonia, Viral/complications , Pulmonary Circulation/physiology , Vascular Diseases/etiology , Adult , Aged , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Tomography, X-Ray Computed , Vascular Diseases/diagnosis , Vascular Diseases/physiopathology
17.
Radiol Cardiothorac Imaging ; 2(5): e200428, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33778632

ABSTRACT

BACKGROUND: The role of dual energy computed tomographic pulmonary angiography (DECTPA) in revealing vasculopathy in coronavirus disease 2019 (COVID-19) has not been fully explored. PURPOSE: To evaluate the relationship between DECTPA and disease duration, right ventricular dysfunction (RVD), lung compliance, D-dimer and obstruction index in COVID-19 pneumonia. MATERIALS AND METHODS: This institutional review board approved this retrospective study, and waived the informed consent requirement. Between March-May 2020, 27 consecutive ventilated patients with severe COVID-19 pneumonia underwent DECTPA to diagnose pulmonary thrombus (PT); 11 underwent surveillance DECTPA 14 ±11.6 days later. Qualitative and quantitative analysis of perfused blood volume (PBV) maps recorded: i) perfusion defect 'pattern' (wedge-shaped, mottled or amorphous), ii) presence of PT and CT obstruction index (CTOI) and iii) PBV relative to pulmonary artery enhancement (PBV/PAenh); PBV/PAenh was also compared with seven healthy volunteers and correlated with D-Dimer and CTOI. RESULTS: Amorphous (n=21), mottled (n=4), and wedge-shaped (n=2) perfusion defects were observed (M=20; mean age=56 ±8.7 years). Mean extent of perfusion defects=36.1%±17.2. Acute PT was present in 11/27(40.7%) patients. Only wedge-shaped defects corresponded with PT (2/27, 7.4%). Mean CTOI was 2.6±5.4 out of 40. PBV/PAenh (18.2 ±4.2%) was lower than in healthy volunteers (27 ±13.9%, p = 0.002). PBV/PAenh correlated with disease duration (ß = 0.13, p = 0.04), and inversely correlated with RVD (ß = -7.2, p = 0.001), persisting after controlling for confounders. There were no linkages between PBV/PAenh and D-dimer or CTOI. CONCLUSION: Perfusion defects and decreased PBV/PAenh are prevalent in severe COVID-19 pneumonia. PBV/PAenh correlates with disease duration and inversely correlates with RVD. PBV/PAenh may be an important marker of vasculopathy in severe COVID-19 pneumonia even in the absence of arterial thrombus.

18.
Pulm Circ ; 10(4): 2045894020973906, 2020.
Article in English | MEDLINE | ID: mdl-33403100

ABSTRACT

Acute respiratory distress syndrome in patients with Coronavirus disease 19 is associated with an unusually high incidence of pulmonary embolism and microthrombotic disease, with evidence for reduced fibrinolysis. We describe seven patients requiring invasive ventilation for COVID-19-associated acute respiratory distress syndrome with pulmonary thromboembolic disease, pulmonary hypertension ± severe right ventricular dysfunction on echocardiography, who were treated with alteplase as fibrinolytic therapy. All patients were non-smokers, six (86%) were male and median age was 56.7 (50-64) years. They had failed approaches including therapeutic anticoagulation, prone ventilation (n = 4), inhaled nitric oxide (n = 5) and nebulised epoprostenol (n = 2). The median duration of mechanical ventilation prior to thrombolysis was seven (5-11) days. Systemic alteplase was administered to six patients (50 mg or 90 mg bolus over 120 min) at 16 (10-22) days after symptom onset. All received therapeutic heparin pre- and post-thrombolysis, without intracranial haemorrhage or other major bleeding. Alteplase improved PaO2/FiO2 ratio (from 97.0 (86.3-118.6) to 135.6 (100.7-171.4), p = 0.03) and ventilatory ratio (from 2.76 (2.09-3.49) to 2.36 (1.82-3.05), p = 0.011) at 24 h. Echocardiographic parameters at two (1-3) days (n = 6) showed right ventricular systolic pressure (RVSP) was 63 (50.3-75) then 57 (49-66) mmHg post-thrombolysis (p = 0.26), tricuspid annular planar systolic excursion (TAPSE) was unchanged (from 18.3 (11.9-24.5) to 20.5 (15.4-24.2) mm, p = 0.56) and right ventricular fractional area change (from 15.4 (11.1-35.6) to 31.2 (16.4-33.1)%, p = 0.09). At seven (1-13) days after thrombolysis, using dual energy computed tomography imaging (n = 3), average relative peripheral lung enhancement increased from 12.6 to 21.6% (p = 0.06). In conclusion, thrombolysis improved PaO2/FiO2 ratio and ventilatory ratio at 24 h as rescue therapy in patients with right ventricular dysfunction due to COVID-19-associated ARDS despite maximum therapy, as part of a multimodal approach, and warrants further study.

19.
Respiration ; 98(1): 86-94, 2019.
Article in English | MEDLINE | ID: mdl-31067563

ABSTRACT

Recent advances in bronchoscopic lung volume reduction (BLVR) offer new therapeutic alternatives for patients with emphysema and hyperinflation. Endobronchial valves and coils are 2 potential BLVR techniques which have been shown to improve pulmonary function and the quality of life in patients with emphysema. Current patient selection for LVR procedures relies on 3 main inclusion criteria: low attenuation area (in %), also known as emphysema score, heterogeneity score, and fissure integrity score. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative CT to determine emphysema severity play an important role in treatment planning and post-operative assessment. Due to the variations in lung anatomy, manual corrections are often required to ensure successful and accurate lobe segmentation for pathological and post-treatment CT scan analysis. The advanced development and utilisation of quantitative CT do not simply represent regional changes in pulmonary function but aids in analysis for better patient selection with severe emphysema who are most likely to benefit from BLVR.


Subject(s)
Pneumonectomy , Pulmonary Emphysema/diagnosis , Pulmonary Emphysema/surgery , Humans , Pulmonary Emphysema/physiopathology , Respiratory Function Tests , Tomography, X-Ray Computed , Treatment Outcome
20.
Quant Imaging Med Surg ; 8(7): 709-718, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30211037

ABSTRACT

Lung cancer is the leading cause of cancer death in both men and women. Clinical staging plays a crucial role in predicting survivor as well as influencing management option in lung cancer patients. Guidelines are constantly being reviewed as more data becomes available to provide the most accurate prognostic markers, hence aiding in the clinical detection and staging of lung cancer. Since its introduction in the 1970s, the TNM staging has undergone significant revisions with the latest, 8th edition, being effective internationally from 2018. This edition re-categorizes the tumour size and other non-quantitative tumour descriptors (T), and further subclassifies extra-thoracic metastases (M). The clinical nodal (N) classifier is unchanged as the earlier version correlates well with prognosis. The downstream effects on staging to accommodate for the new T and M classifications are highlighted. The survival is inversely proportional to every centimeter increase in tumour size up till 7 cm, where the same prognosis as a T4 disease is reached. Hence, some of the T-classifiers based on size of the tumour is upstaged to reflect that. Invasion of the diaphragm is considered T4 instead of T3. On the other hand, involvement of the main bronchus regardless of tumour distance to carina as well as atelectasis is down-staged from a T3 to a T2 disease. Since the 7th edition, new entities of lung tumour known as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) have been introduced. The T-defining features are also described in this manuscript. Extrathoracic metastases that were classified as M1b in the 7th edition is further subcategorized into M1b and M1c in the 8th edition, to better define oligometastasis which has a better prognosis, and may benefit from more aggressive local therapy. This overview aims to provide radiologists with a description of the changes in the latest edition including staging of subsolid and multiple nodules, outline potential limitations of this 8th edition, as well as discussion on the implications on treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...