Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(5): 1277-1290, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36621931

ABSTRACT

Iron sulphur halide clusters [Fe4S4Br4]2- and [Fe4S4X2Y2]2- (X, Y = Cl, Br, I) were obtained in excellent yields (77 to 78%) and purity from [Fe(CO)5], elemental sulphur, I2 and benzyltrimethylammonium (BTMA+) iodide, bromide and chloride. Single crystals of (BTMA)2[Fe4S4Br4] (1), (BTMA)2[Fe4S4Br2Cl2] (2), (BTMA)2[Fe4S4Cl2I2] (3), and (BTMA)2[Fe4S4Br2I2] (4) were isostructural to the previously reported (BTMA)2[Fe4S4I4] (5) (monoclinic, Cc). Instead of the chloride cubane cluster [Fe4S4Cl4]2-, we found the prismane-shaped cluster (BTMA)3[Fe6S6Cl6] (6) (P1̄). 57Fe Mössbauer spectroscopy indicates complete delocalisation with Fe2.5+ oxidation states for all iron atoms. Magnetic measurements showed small χMT values at 298 K ranging from 1.12 to 1.54 cm3 K mol-1, indicating the dominant antiferromagnetic exchange interactions. With decreasing temperature, the χMT values decreased to reach a plateau at around 100 K. From about 20 K, the values drop significantly. Fitting the data in the Heisenberg-Dirac-van Vleck (HDvV) as well as the Heisenberg Double Exchange (HDE) formalism confirmed the delocalisation and antiferromagnetic coupling assumed from Mössbauer spectroscopy.

2.
Dalton Trans ; 40(42): 11184-91, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-21853190

ABSTRACT

The association and dissociation of ligands plays a vital role in determining the reactivity of organometallic catalysts. Computational studies with density functional theory often fail to reproduce experimental metal-ligand bond energies, but recently functionals which better capture dispersion effects have been developed. Here we explore their application and discuss future challenges for computational studies of organometallic catalysis.


Subject(s)
Organometallic Compounds/chemistry , Palladium/chemistry , Quantum Theory , Ruthenium/chemistry , Alcohols/chemistry , Alkenes/chemistry , Ligands , Oxidation-Reduction , Thermodynamics
3.
Dalton Trans ; 39(48): 11616-27, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21038065

ABSTRACT

The heteroscorpionate ligands [HB(taz)(2)(pz(R))](-) (pz(R) = pz, pz(Me2), pz(Ph)) and [HB(taz)(pz)(2)](-), synthesised from the appropriate potassium hydrotris(pyrazolyl)borate salt and 4-ethyl-3-methyl-5-thioxo-1,2,4-triazole (Htaz), react with [{Rh(cod)(µ-Cl)}(2)] to give [Rh(cod)Tx] {Tx = HB(taz)(2)(pz), HB(taz)(2)(pz(Me2)), HB(taz)(2)(pz(Ph)), HB(taz)(pz)(2)}; the heteroscorpionate rhodaboratrane [Rh{B(taz)(2)(pz(Me2))}{HB(taz)(2)(pz(Me2))}] is the only isolable product from the reaction of [{Rh(nbd)(µ-Cl)}(2)] with K[HB(taz)(2)(pz(Me2))]. Carbonylation of the cod complexes gave a mixture of [Rh(CO)(2)Tx] and [(RhTx)(2)(µ-CO)(3)] which reacts with PR(3) to give [Rh(CO)(PR(3))Tx] (R = Cy, NMe(2), Ph, OPh). In the solid state the complexes are square planar with the particular structure dependent on the steric and/or electronic properties of the scorpionate and ancillary ligands. The complex [Rh(cod){HB(taz)(pz)(2)}] has the heteroscorpionate κ(2)[N(2)]-coordinated to rhodium with the B-H bond directed away from the rhodium square plane while [Rh(cod){HB(taz)(2)(pz(Me2))}] is κ(2)[SN]-coordinated, with the B-H bond directed towards the metal. The complexes [Rh(CO)(PPh(3)){HB(taz)(2)(pz)}] and [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Me2))}] are also κ(2)[SN]-coordinated but with the pyrazolyl ring cis to PPh(3); in the former the B-H bond is directed towards rhodium while in the latter the ring is pseudo-parallel to the rhodium square plane, as also found for [Rh(CO)(2){HB(taz)(2)(pz(Me2))}]. The analogues [Rh(CO)(PR(3)){HB(taz)(2)(pz(Me2))}] (R = Cy, NMe(2)) have the phosphines trans to the pyrazolyl ring. Uniquely, [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Ph))}] is κ(2)[S(2)]-coordinated. A qualitative mechanism is given for the rapid ring-exchange, and hence isomerisation, observed in solution.

4.
Dalton Trans ; (40): 8724-36, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19809748

ABSTRACT

The reaction of a mixture of the sodium salts of dihydrobis(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolyl)borate, NaBt, and hydrotris(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolyl)borate, NaTt, with [{Rh(cod)(mu-Cl)}2] gave [Rh(cod)Bt] and [Rh(cod)Tt], which separately react with CO gas to give the unstable dicarbonyl [Rh(CO)2Bt] and an equilibrium mixture of two isomers of [Rh(CO)2Tt] and [(RhTt)2(mu-CO)3], respectively. Tertiary phosphorus donor ligands react with the mixture of [Rh(CO)2Tt] and [(RhTt)2(mu-CO)3] to give [Rh(CO)(PR3)Tt] (R = Cy, NMe(2), Ph or OPh) and [Rh{P(OPh)3}2Tt] in which rhodium is bound to two sulfur atoms of the scorpionate ligand; the B-H bond is directed towards the metal to give an agostic-like B-H...Rh interaction. Dinuclear [(RhTt)2(mu-CO)3] has kappa3[S3]-bound Tt ligands with a rhodium-rhodium bond bridged by three carbonyls. In solution the mononuclear Tt complexes undergo rapid dynamic interchange of the three thioxotriazolyl rings, probably via kappa3[S3]-coordinated intermediates. The monocarbonyls [Rh(CO)(PR3)Tt] (R = Cy, NMe2 or Ph) react with two equivalents of [Fe(eta-C5H5)2][PF6] in the presence of triethylamine to give the monocationic rhodaboratranes [Rh(CO)(PR3){B(taz)3}]+, with boron NMR spectroscopy providing evidence for the boron-rhodium bond. In the solid state, rhodium is bound to the three sulfur atoms and the boron of the B(taz)3 fragment, forming a tricyclo[3.3.3.0] cage. The phosphine is trans to the Rh-B bond, the long Rh-P bond indicating a pronounced trans influence for the coordinated boron. The cation [Rh(CO)(PPh3){B(taz)3}]+ reacts with [NBu(n)(4)]I to give [Rh(PPh3)I{B(taz)3}], in which the halide is trans to the Rh-B bond, and a second species, possibly [Rh(CO)I{B(taz)3}]. The dirhodaboratrane [Rh2(PCy3){B(taz)3}2][PF6]2, a minor byproduct in the synthesis of [Rh(CO)(PCy3){B(taz)3}][PF6], has a distorted square pyramidal rhodium atom with a vacant site trans to the Rh-B bond. The second metal has four coordination sites filled by the sulfur and boron atoms of a second B(taz)3 unit, the remaining octahedral sites occupied by two of the sulfur atoms of the first B(taz)3 unit which therefore bridges the two rhodium atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...