Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Colloid Interface Sci ; 365(1): 222-35, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21981972

ABSTRACT

The structures of inkjet coatings commonly contain a high concentration of fine diameter pores together with a large pore volume capacity. To clarify the interactive role of the porous structure and the coincidentally occurring swelling of binder during inkjet ink vehicle imbibition, coating structures were studied in respect to their absorption behaviour for polar and non-polar liquid. The absorption measurement was performed using compressed pigment tablets, based on a range of pigment types and surface charge polarity, containing either polyvinyl alcohol (PVOH) or styrene acrylic latex (SA) as the binder, by recording the liquid uptake with a microbalance. The results indicate that, at the beginning of liquid uptake, at times less than 2 s, the small pores play the dominant role with respect to the inkjet ink vehicle imbibition. Simultaneously, water molecules diffuse into and within the hydrophilic PVOH binder causing binder swelling, which diminishes the number of active small pores and reduces the diameter of remaining pores, thus slowing the capillary flow as a function of time. The SA latex does not absorb the vehicle, and therefore the dominating phenomenon is then capillary absorption. However, the diffusion coefficient of the water vapour across separately prepared PVOH and SA latex films seems to be quite similar. In the PVOH, the polar liquid diffuses into the polymer network, whereas in the SA latex the hydrophobic nature prevents the diffusion into the polymer matrix and there exists surface diffusion. At longer timescale, permeation flow into the porous coating dominates as the resistive term controlling the capillary driven liquid imbibition rate.

2.
J Pharm Pharmacol ; 49(4): 377-83, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9232534

ABSTRACT

A previously developed computer model, named Pore-Cor, has been used to simulate the changes in the void-space dimensions which occur during the compaction of tablets over a range of pressures. The tablets were made by mixing pharmaceutical grade crystalline lactose and an anti-inflammatory compound in the proportion 4:1. Compacts were made by placing a weighed amount of the mixed powder into a stainless-steel die and applying pressure with a hand-operated calibrated hydraulic press. Compacts were prepared at eight pressures over the hydraulic pressure range 1 to 8 ton in-2 (15.4-123.2 MPa) in 1 ton in-2 increments. Mercury-intrusion curves were measured for the eight samples by use of a porosimeter and the Pore-Cor package was then used to simulate the mercury-intrusion curves and generate void-space models of the correct porosity. The experimental and simulated characteristic throat diameter, the experimental and simulated porosity, and the simulated permeability of the tablets have all been shown to follow expected trends. The successful modelling of void-structure parameters, which are difficult or impossible to measure experimentally, opens the way to an improved understanding of the strength of compacts.


Subject(s)
Anti-Inflammatory Agents/chemistry , Computer Simulation , Lactose/chemistry , Models, Chemical , Tablets/standards , Biomechanical Phenomena , Calibration , Crystallization , Mercury , Particle Size , Permeability , Porosity , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...