Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Gerontol ; 51: 38-45, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24394156

ABSTRACT

The shortening of telomeres as a causative factor in ageing is a widely discussed hypothesis in ageing research. The study of telomere length and its regenerating enzyme telomerase in the longest-lived non-colonial animal on earth, Arctica islandica, should inform whether the maintenance of telomere length plays a role in reaching the extreme maximum lifespan (MLSP) of >500years in this species. Since longitudinal measurements on living animals cannot be achieved, a cross-sectional analysis of a short-lived (MLSP 40years from the Baltic Sea) and a long-lived population (MLSP 226years Northeast of Iceland) and in different tissues of young and old animals from the Irish Sea was performed. A high heterogeneity of telomere length was observed in investigated A. islandica over a wide age range (10-36years for the Baltic Sea, 11-194years for Irish Sea, 6-226years for Iceland). Constant telomerase activity and telomere lengths were detected at any age and in different tissues; neither correlated with age or population habitat. Stable telomere maintenance might contribute to the long lifespan of A. islandica. Telomere dynamics are no explanation for the distinct MLSPs of the examined populations and thus the cause of it remains to be investigated.


Subject(s)
Aging/physiology , Bivalvia/physiology , Longevity/physiology , Telomere Homeostasis/physiology , Telomere/physiology , Aging/genetics , Animals , Base Sequence , Bivalvia/enzymology , Bivalvia/genetics , Conserved Sequence , DNA/analysis , Genome/genetics , Longevity/genetics , Telomerase/metabolism , Telomere/enzymology , Telomere/genetics , Telomere Homeostasis/genetics
2.
J Gerontol A Biol Sci Med Sci ; 69(12): 1448-61, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24347613

ABSTRACT

Study of negligibly senescent animals may provide clues that lead to better understanding of the cardiac aging process. To elucidate mechanisms of successful cardiac aging, we investigated age-related changes in proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in the heart of the ocean quahog Arctica islandica, the longest-lived noncolonial animal (maximum life span potential: 508 years). We found that in the heart of A. islandica the level of oxidatively damaged proteins did not change significantly up to 120 years of age. No significant aging-induced changes were observed in caspase-like and trypsin-like proteasome activity. Chymotrypsin-like proteasome activity showed a significant early-life decline, then it remained stable for up to 182 years. No significant relationship was observed between the extent of protein ubiquitination and age. In the heart of A. islandica, an early-life decline in expression of HSP90 and five mitochondrial electron transport chain complexes was observed. We found significant age-related increases in the expression of three cytokine-like mediators (interleukin-6, interleukin-1ß, and tumor necrosis factor-α) in the heart of A. islandica. Collectively, in extremely long-lived molluscs, maintenance of protein homeostasis likely contributes to the preservation of cardiac function. Our data also support the concept that low-grade chronic inflammation in the cardiovascular system is a universal feature of the aging process, which is also manifest in invertebrates.


Subject(s)
Cytokines/biosynthesis , Heat-Shock Proteins/biosynthesis , Longevity/physiology , Mercenaria/physiology , Mitochondria, Heart/metabolism , Oxidative Stress , Proteasome Endopeptidase Complex/biosynthesis , Aging , Animals , Enzyme-Linked Immunosorbent Assay
3.
J Gerontol A Biol Sci Med Sci ; 68(4): 359-67, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22904097

ABSTRACT

Bivalve species with exceptional longevity are newly introduced model systems in biogerontology to test evolutionarily conserved mechanisms of aging. Here, we tested predictions based on the oxidative stress hypothesis of aging using one of the tropical long-lived sessile giant clam species, the smooth giant clam (Tridacna derasa; predicted maximum life span: >100 years) and the short-lived Atlantic bay scallop (Argopecten irradians irradians; maximum life span: 2 years). The warm water-dwelling giant clams warrant attention because they challenge the commonly held view that the exceptional longevity of bivalves is a consequence of the cold water they reside in. No significant interspecific differences in production of H2O2 and O2- in the gills, heart, or adductor muscle were observed. Protein carbonyl content in gill and muscle tissues were similar in T derasa and A i irradians. In tissues of T derasa, neither basal antioxidant capacities nor superoxide dismutase and catalase activities were consistently greater than in A i irradians. We observed a positive association between longevity and resistance to mortality induced by exposure to tert-butyl hydroperoxide (TBHP). This finding is consistent with the prediction based on the oxidative stress hypothesis of aging. The findings that in tissues of T derasa, proteasome activities are significantly increased as compared with those in tissues of A i irradians warrant further studies to test the role of enhanced protein recycling activities in longevity of bivalves.


Subject(s)
Aging/physiology , Longevity/physiology , Oxidative Stress/physiology , Protein Carbonylation , tert-Butylhydroperoxide/pharmacology , Animals , Antioxidants/metabolism , Biological Evolution , Bivalvia , Catalase/metabolism , Free Radical Scavengers/metabolism , Hydrogen Peroxide/metabolism , Life Expectancy , Models, Biological , Seawater , Species Specificity , Superoxide Dismutase/metabolism , Temperature , Tissue Survival/physiology
4.
J Gerontol A Biol Sci Med Sci ; 68(5): 521-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23051979

ABSTRACT

Bivalve molluscs are newly discovered models of successful aging. Here, we test the hypothesis that extremely long-lived bivalves are not uniquely resistant to oxidative stressors (eg, tert-butyl hydroperoxide, as demonstrated in previous studies) but exhibit a multistress resistance phenotype. We contrasted resistance (in terms of organismal mortality) to genotoxic stresses (including topoisomerase inhibitors, agents that cross-link DNA or impair genomic integrity through DNA alkylation or methylation) and to mitochondrial oxidative stressors in three bivalve mollusc species with dramatically differing life spans: Arctica islandica (ocean quahog), Mercenaria mercenaria (northern quahog), and the Atlantic bay scallop, Argopecten irradians irradians (maximum species life spans: >500, >100, and ~2 years, respectively). With all stressors, the short-lived A i irradians were significantly less resistant than the two longer lived species. Arctica islandica were consistently more resistant than M mercenaria to mortality induced by oxidative stressors as well as DNA methylating agent nitrogen mustard and the DNA alkylating agent methyl methanesulfonate. The same trend was not observed for genotoxic agents that act through cross-linking DNA. In contrast, M mercenaria tended to be more resistant to epirubicin and genotoxic stressors, which cause DNA damage by inhibiting topoisomerases. To our knowledge, this is the first study comparing resistance to genotoxic stressors in bivalve mollusc species with disparate longevities. In line with previous studies of comparative stress resistance and longevity, our data extends, at least in part, the evidence for the hypothesis that an association exists between longevity and a general resistance to multiplex stressors, not solely oxidative stress. This work also provides justification for further investigation into the interspecies differences in stress response signatures induced by a diverse array of stressors in short-lived and long-lived bivalves, including pharmacological agents that elicit endoplasmic reticulum stress and cellular stress caused by activation of innate immunity.


Subject(s)
Bivalvia/genetics , DNA Damage , Longevity/genetics , Animals , Bivalvia/physiology , Phenotype
5.
J Gerontol A Biol Sci Med Sci ; 66(7): 741-50, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21486920

ABSTRACT

We assess whether reactive oxygen species production and resistance to oxidative stress might be causally involved in the exceptional longevity exhibited by the ocean quahog Arctica islandica. We tested this hypothesis by comparing reactive oxygen species production, resistance to oxidative stress, antioxidant defenses, and protein damage elimination processes in long-lived A islandica with the shorter-lived hard clam, Mercenaria mercenaria. We compared baseline biochemical profiles, age-related changes, and responses to exposure to the oxidative stressor tert-butyl hydroperoxide (TBHP). Our data support the premise that extreme longevity in A islandica is associated with an attenuated cellular reactive oxygen species production. The observation of reduced protein carbonyl concentration in A islandica gill tissue compared with M mercenaria suggests that reduced reactive oxygen species production in long-living bivalves is associated with lower levels of accumulated macromolecular damage, suggesting cellular redox homeostasis may determine life span. Resistance to aging at the organismal level is often reflected in resistance to oxidative stressors at the cellular level. Following TBHP exposure, we observed not only an association between longevity and resistance to oxidative stress-induced mortality but also marked resistance to oxidative stress-induced cell death in the longer-living bivalves. Contrary to some expectations from the oxidative stress hypothesis, we observed that A islandica exhibited neither greater antioxidant capacities nor specific activities than in M mercenaria nor a more pronounced homeostatic antioxidant response following TBHP exposure. The study also failed to provide support for the exceptional longevity of A islandica being associated with enhanced protein recycling. Our findings demonstrate an association between longevity and resistance to oxidative stress-induced cell death in A islandica, consistent with the oxidative stress hypothesis of aging and provide justification for detailed evaluation of pathways involving repair of free radical-mediated macromolecular damage and regulation of apoptosis in the world's longest-living non-colonial animal.


Subject(s)
Aging/metabolism , Apoptosis , Longevity/physiology , Mercenaria/physiology , Oxidative Stress/physiology , tert-Butylhydroperoxide/pharmacology , Animals , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Longevity/drug effects , Mercenaria/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL