Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Arthritis Res Ther ; 25(1): 154, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612718

ABSTRACT

OBJECTIVES: Osteoarthritis (OA) is increasingly recognised as a whole joint disease, with an important role for synovium. However, the repertoire of immune cells and fibroblasts that constitute OA synovium remains understudied. This study aims to characterise the cellular composition of advanced OA synovium and to explore potential correlations between different cell types and patient demographics or clinical scores. METHODS: Synovium, collected from 10 patients with advanced OA during total knee replacement surgery, was collagenase-digested, and cells were stained for flow cytometry analysis. Formalin-fixed paraffin-embedded synovium was sectioned, stained with immunofluorescence, and imaged using the multiplex Cell DIVE platform. Patient demographics and clinical scores were also collected. RESULTS: The proportion of immune cells in OA synovium varied between patients (8-38% of all cells). Macrophages and T cells were the dominant immune cell populations, together representing 76% of immune cells. Age positively correlated with the proportion of macrophages, and negatively correlated with T cells. CCR6+ T cells were found in 6/10 patients; these patients had a higher mean Kellgren-Lawrence grade across the three knee compartments. Immunofluorescence staining showed that macrophages were present in the lining as well as distributed throughout the sublining, while T and B cells were mainly localised near vessels in the sublining. Fibroblast subsets (CD45-PDPN+) based on the expression of CD34/CD90 or FAP/CD90 were identified in all patient samples, and some populations correlate with the percentage of immune cells or clinical scores. Immunofluorescence staining showed that FAP expression was particularly strong in the lining layer, but also present throughout the sublining layer. CD90 expression was exclusively found around vessels in the sublining, while CD34 was mostly found in the sublining but also occasionally in the lining layer. CONCLUSIONS: There are significant differences in the relative proportions and subsets of immune cells in OA synovium; exploratory correlative analyses suggest that these differences might be correlated with age, clinical scores, or fibroblast subsets. Additional studies are required to understand how different cell types affect OA pathobiology, and if the presence or proportion of cell subsets relates to disease phenotypes.


Subject(s)
Arthroplasty, Replacement, Knee , Osteoarthritis , Humans , Knee Joint , Fibroblasts , Antigens, CD34
2.
Commun Biol ; 4(1): 1395, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907325

ABSTRACT

Regulatory T cells (Tregs) play an important role in controlling inflammation and limiting autoimmunity, but their phenotypes at inflammatory sites in human disease are poorly understood. We here analyze the single-cell transcriptome of >16,000 Tregs obtained from peripheral blood and synovial fluid of two patients with HLA-B27+ ankylosing spondylitis and three patients with psoriatic arthritis, closely related forms of inflammatory spondyloarthritis. We identify multiple Treg clusters with distinct transcriptomic profiles, including, among others, a regulatory CD8+ subset expressing cytotoxic markers/genes, and a Th17-like RORC+ Treg subset characterized by IL-10 and LAG-3 expression. Synovial Tregs show upregulation of interferon signature and TNF receptor superfamily genes, and marked clonal expansion, consistent with tissue adaptation and antigen contact respectively. Individual synovial Treg clones map to different clusters indicating cell fate divergence. Finally, we demonstrate that LAG-3 directly inhibits IL-12/23 and TNF secretion by patient-derived monocytes, a mechanism with translational potential in SpA. Our detailed characterization of Tregs at an important inflammatory site illustrates the marked specialization of Treg subpopulations.


Subject(s)
Gene Expression , Spondylarthritis/physiopathology , Synovial Fluid/chemistry , T-Lymphocytes, Regulatory/metabolism , Adult , Aged , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Single-Cell Analysis
3.
Front Immunol ; 11: 1520, 2020.
Article in English | MEDLINE | ID: mdl-32765525

ABSTRACT

Objectives: GM-CSF is a pro-inflammatory cytokine with multiple actions predominantly on myeloid cells. Enhanced GM-CSF expression by lymphocytes from patients with Ankylosing Spondylitis (AS) has recently been described, however, its potential pathogenic role(s) in AS are unknown. Methods: The effects of GM-CSF on TNF, IL-23, and CCL17 production by blood, PBMCs and isolated CD14+ monocytes from AS patients and healthy controls (HCs) were studied using ELISA. Serum CCL17 and GM-CSF and T cell GM-CSF production were studied in AS patients including pre-and on TNFi therapy. Results: GM-CSF markedly increased TNF production by LPS-stimulated whole blood, peripheral blood mononuclear cells (PBMC) and purified monocytes from AS patients, with 2 h GM-CSF exposure sufficient for monocyte "priming." Blocking of GM-CSF significantly reduced the production of TNF by whole blood from AS patients but not HCs. GM-CSF priming increased IL-23 production from LPS-stimulated AS and HC whole blood 5-fold, with baseline and stimulated IL-23 levels being significantly higher in AS whole blood. GM-CSF also stimulated CCL17 production from AS and HC blood and CCL17 levels were elevated in AS plasma. GM-CSF could be detected in plasma from 14/46 (30%) AS patients compared to 3/18 (17%) HC. Conclusion: We provide evidence that GM-CSF primes TNF and IL-23 responses in myeloid cells from AS patients and HC. We also show CCL17 levels, downstream of GM-CSF, were elevated in plasma samples of AS patients. Taken together these observations are supportive of GM-CSF neutralization as a potential novel therapeutic approach for the treatment of AS.


Subject(s)
Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Inflammation Mediators/metabolism , Monocytes/immunology , Monocytes/metabolism , Spondylitis, Ankylosing/etiology , Spondylitis, Ankylosing/metabolism , Biomarkers , Case-Control Studies , Chemokine CCL17/biosynthesis , Disease Susceptibility , Gene Expression Regulation , Humans , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/immunology , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/pathology , Toll-Like Receptors/agonists , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor Inhibitors/therapeutic use
4.
Sci Rep ; 8(1): 15645, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353145

ABSTRACT

Treatment options for Ankylosing Spondylitis (AS) are still limited. The T helper cell 17 (Th17) pathway has emerged as a major driver of disease pathogenesis and a good treatment target. Janus kinases (JAK) are key transducers of cytokine signals in Th17 cells and therefore promising targets for the treatment of AS. Here we investigate the therapeutic potential of four different JAK inhibitors on cells derived from AS patients and healthy controls, cultured in-vitro under Th17-promoting conditions. Levels of IL-17A, IL-17F, IL-22, GM-CSF and IFNγ were assessed by ELISA and inhibitory effects were investigated with Phosphoflow. JAK1/2/3 and TYK2 were silenced in CD4+ T cells with siRNA and effects analyzed by ELISA (IL-17A, IL-17F and IL-22), Western Blot, qPCR and Phosphoflow. In-vitro inhibition of CD4+ T lymphocyte production of multiple Th17 cytokines (IL-17A, IL-17F and IL-22) was achieved with JAK inhibitors of differing specificity, as well as by silencing of JAK1-3 and Tyk2, without impacting on cell viability or proliferation. Our preclinical data suggest JAK inhibitors as promising candidates for therapeutic trials in AS, since they can inhibit multiple Th17 cytokines simultaneously. Improved targeting of TYK2 or other JAK isoforms may confer tailored effects on Th17 responses in AS.


Subject(s)
Janus Kinases/antagonists & inhibitors , Molecular Targeted Therapy , Spondylitis, Ankylosing/enzymology , Spondylitis, Ankylosing/immunology , Th17 Cells/immunology , Adult , Case-Control Studies , Cytokines/metabolism , Female , Humans , Interleukin-17/biosynthesis , Janus Kinases/metabolism , Male , Middle Aged , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/metabolism , STAT Transcription Factors/metabolism , Small Molecule Libraries/pharmacology , Spondylitis, Ankylosing/pathology , Synovial Fluid/drug effects , Synovial Fluid/metabolism , Th17 Cells/drug effects
5.
Ann Rheum Dis ; 75(12): 2150-2156, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26916345

ABSTRACT

OBJECTIVES: To explore the functional basis for the association between ankylosing spondylitis (AS) and single-nucleotide polymorphisms (SNPs) in the IL23R-IL12RB2 intergenic region. METHODS: We performed conditional analysis on genetic association data and used epigenetic data on chromatin remodelling and transcription factor (TF) binding to identify the primary AS-associated IL23R-IL12RB2 intergenic SNP. Functional effects were tested in luciferase reporter assays in HEK293T cells and allele-specific TF binding was investigated by electrophoretic mobility gel shift assays. IL23R and IL12RB2 mRNA levels in CD4+ T cells were compared between cases homozygous for the AS-risk 'A' allele and the protective 'G' allele. The proportions of interleukin (IL)-17A+ and interferon (IFN)-γ+ CD4+ T-cells were measured by fluorescence-activated cell sorting and compared between these AS-risk and protective genotypes. RESULTS: Conditional analysis identified rs11209032 as the probable causal SNP within a 1.14 kb putative enhancer between IL23R and IL12RB2. Reduced luciferase activity was seen for the risk allele (p<0.001) and reduced H3K4me1 methylation observed in CD4+ T-cells from 'A/A' homozygotes (p=0.02). The binding of nuclear extract to the risk allele was decreased ∼3.5-fold compared with the protective allele (p<0.001). The proportion of IFN-γ+ CD4+ T-cells was increased in 'A/A' homozygotes (p=0.004), but neither IL23R nor IL12RB2 mRNA was affected. CONCLUSIONS: The rs11209032 SNP downstream of IL23R forms part of an enhancer, allelic variation of which may influence Th1-cell numbers. Homozygosity for the risk 'A' allele is associated with more IFN-γ-secreting (Th1) cells. Further work is necessary to explain the mechanisms for these important observations.


Subject(s)
Cell Differentiation/genetics , Receptors, Interleukin-12/genetics , Receptors, Interleukin/genetics , Spondylitis, Ankylosing/genetics , Th1 Cells/physiology , Adult , Alleles , DNA, Intergenic , Female , Flow Cytometry , Genetic Association Studies , Genetic Variation , Genotype , HEK293 Cells , Humans , Male , Polymorphism, Single Nucleotide
6.
Arthritis Rheumatol ; 68(4): 901-14, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26841353

ABSTRACT

OBJECTIVE: In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). The aim of this study was to determine the factors that induce KIR-3DL2 expression, and to characterize the relationship between HLA-B27 and the phenotype and function of KIR-3DL2-expressing CD4+ T cells in SpA. METHODS: In total, 34 B27+ patients with SpA, 28 age- and sex-matched healthy controls (20 B27- and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template-switch anchored reverse transcription-polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme-linked immunosorbent assay. RESULTS: Cellular activation induced KIR-3DL2 expression on both naive and effector CD4+ T cells. KIR-3DL2 binding to B27+ cells promoted expression of KIR-3DL2, the Th17-specific transcription factor retinoic acid receptor-related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR-3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen-presenting cells, KIR-3DL2+CD4+ T cells produced less interleukin-2 (IL-2) but more IL-17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR-3DL2 to B27 heavy chains. CONCLUSION: KIR-3DL2 binding to HLA-B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA-B27-KIR-3DL2 interactions for the treatment of B27+ patients with SpA.


Subject(s)
Cell Differentiation/immunology , HLA-B27 Antigen/immunology , Receptors, KIR3DL2/immunology , Spondylarthropathies/immunology , Th17 Cells/immunology , Adult , Aged , Arthritis, Psoriatic/immunology , Arthritis, Reactive/immunology , Arthritis, Rheumatoid/immunology , Blotting, Western , CD4-Positive T-Lymphocytes/immunology , Case-Control Studies , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , HLA-B27 Antigen/metabolism , Humans , Male , Middle Aged , Receptors, Antigen, T-Cell/genetics , Receptors, KIR3DL2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spondylitis, Ankylosing/immunology , T-Lymphocytes/immunology , Transcriptome , Young Adult
7.
Ann Rheum Dis ; 75(5): 916-23, 2016 May.
Article in English | MEDLINE | ID: mdl-26130142

ABSTRACT

OBJECTIVE: Human leucocyte antigen (HLA)-B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly associated with ankylosing spondylitis (AS). ERAP1 is a key aminopeptidase in HLA class I presentation and can potentially alter surface expression of HLA-B27 free heavy chains (FHCs). We studied the effects of ERAP1 silencing/inhibition/variations on HLA-B27 FHC expression and Th17 responses in AS. METHODS: Flow cytometry was used to measure surface expression of HLA class I in peripheral blood mononuclear cells (PBMCs) from patients with AS carrying different ERAP1 genotypes (rs2287987, rs30187 and rs27044) and in ERAP1-silenced/inhibited/mutated HLA-B27-expressing antigen presenting cells (APCs). ERAP1-silenced/inhibited APCs were cocultured with KIR3DL2CD3ε-reporter cells or AS CD4+ T cells. Th17 responses of AS CD4+ T cells were measured by interleukin (IL)-17A ELISA and Th17 intracellular cytokine staining. FHC cell surface expression and Th17 responses were also measured in AS PBMCs following ERAP1 inhibition. RESULTS: The AS-protective ERAP1 variants, K528R and Q730E, were associated with reduced surface FHC expression by monocytes from patients with AS and HLA-B27-expressing APCs. ERAP1 silencing or inhibition in APCs downregulated HLA-B27 FHC surface expression, reduced IL-2 production by KIR3DL2CD3ε-reporter cells and suppressed the Th17 expansion and IL-17A secretion by AS CD4+ T cells. ERAP1 inhibition of AS PBMCs reduced HLA class I FHC surface expression by monocytes and B cells, and suppressed Th17 expansion. CONCLUSIONS: ERAP1 activity determines surface expression of HLA-B27 FHCs and potentially promotes Th17 responses in AS through binding of HLA-B27 FHCs to KIR3DL2. Our data suggest that ERAP1 inhibition has potential for AS treatment.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Immunoglobulin Heavy Chains/metabolism , Spondylitis, Ankylosing/immunology , Th17 Cells/immunology , Adult , Aminopeptidases/genetics , Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Coculture Techniques , Female , Gene Silencing , Genotype , HLA-B27 Antigen/metabolism , Humans , Interleukin-2/biosynthesis , Male , Middle Aged , Minor Histocompatibility Antigens , Monocytes/immunology , Severity of Illness Index
8.
Rapid Commun Mass Spectrom ; 28(18): 1995-2007, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25132300

ABSTRACT

RATIONALE: In recent years, research and applications of the N2O site-specific nitrogen isotope composition have advanced, reflecting awareness of the contribution of N2O to the anthropogenic greenhouse effect, and leading to significant progress in instrument development. Further dissemination of N2O isotopomer analysis, however, is hampered by a lack of internationally agreed gaseous N2O reference materials and an uncertain compatibility of different laboratories and analytical techniques. METHODS: In a first comparison approach, eleven laboratories were each provided with N2O at tropospheric mole fractions (target gas T) and two reference gases (REF1 and REF2). The laboratories analysed all gases, applying their specific analytical routines. Compatibility of laboratories was assessed based on N2O isotopocule data for T, REF1 and REF2. Results for T were then standardised using REF1 and REF2 to evaluate the potential of N2O reference materials for improving compatibility between laboratories. RESULTS: Compatibility between laboratories depended on the analytical technique: isotope ratio mass spectrometry (IRMS) results showed better compatibility for δ(15)N values, while the performance of laser spectroscopy was superior with respect to N2O site preference. This comparison, however, is restricted by the small number of participating laboratories applying laser spectroscopy. Offset and two-point calibration correction of the N2O isotopomer data significantly improved the consistency of position-dependent nitrogen isotope data while the effect on δ(15)N values was only minor. CONCLUSIONS: The study reveals that for future research on N2O isotopocules, standardisation against N2O reference material is essential to improve interlaboratory compatibility. For atmospheric monitoring activities, we suggest N2O in whole air as a unifying scale anchor.


Subject(s)
Gases/chemistry , Mass Spectrometry , Nitrogen Isotopes/chemistry , Nitrous Oxide/chemistry , Algorithms , Gases/analysis , Lasers , Mass Spectrometry/methods , Mass Spectrometry/standards , Mass Spectrometry/trends , Nitrogen Isotopes/analysis , Nitrous Oxide/analysis
9.
Curr Opin Rheumatol ; 25(4): 434-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23656711

ABSTRACT

PURPOSE OF REVIEW: Natural killer (NK) cells, gamma delta (γδ) T-cells and other innate immune cells are important lymphocyte subsets able both to produce cytokines including the pro-inflammatory cytokine IL-17 and to kill cellular targets. This review describes the features of NK cells, γδ T-cells and other innate immune cells, and outlines the evidence for their potential pathogenic roles in spondyloarthritis (SpA). RECENT FINDINGS: NK cells and T cells both express receptors that recognize aberrantly folded human leucocyte antigen. This interaction seems to polarize towards a type 17 immunity programme which has been increasingly implicated in SpA pathology. γδ T-cells have also been shown to be polarized towards a type 17 immunity programme in SpA. Gut interactions with the microbiome can influence NK and innate lymphoid immune responses in SpA and other related diseases. A newly identified population of resident lymphoid cells at the enthesis for the first time offers an explanation for the anatomical localization of SpA. SUMMARY: NK cells, γδ T-cells and other innate immune cells are capable of sharing expression of both transcription factors, including RORγt, and cell surface receptors, such as the killer immunoglobulin-like receptors. There is increasing genetic and functional evidence that they contribute to the RORγt-driven inflammatory type 17 immune responses, and they may link gut inflammation and joint pathology in SpA.


Subject(s)
Killer Cells, Natural/immunology , Receptors, Antigen, T-Cell, gamma-delta/analysis , Spondylarthritis/immunology , T-Lymphocyte Subsets/immunology , Humans , Immunity, Innate , Interleukin-17/biosynthesis , Microbiota/immunology , Spondylarthritis/microbiology
10.
J Immunol ; 190(7): 3216-24, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23440420

ABSTRACT

The human leukocyte Ag HLA-B27 (B27) is strongly associated with the spondyloarthritides. B27 can be expressed at the cell surface of APC as both classical ß2-microglobulin-associated B27 and B27 free H chain forms (FHC), including disulfide-bonded H chain homodimers (termed B27(2)). B27 FHC forms, but not classical B27, bind to KIR3DL2. HLA-A3, which is not associated with spondyloarthritis (SpA), is also a ligand for KIR3DL2. In this study, we show that B27(2) and B27 FHC bind more strongly to KIR3DL2 than other HLA-class I, including HLA-A3. B27(2) tetramers bound KIR3DL2-transfected cells more strongly than HLA-A3. KIR3DL2Fc bound to HLA-B27-transfected cells more strongly than to cells transfected with other HLA-class I. KIR3DL2Fc pulled down multimeric, dimeric, and monomeric FHC from HLA-B27-expressing cell lines. Binding to B27(2) and B27 FHC stimulated greater KIR3DL2 phosphorylation than HLA-A3. B27(2) and B27 FHC stimulated KIR3DL2CD3ε-transduced T cell IL-2 production to a greater extent than control HLA-class I. KIR3DL2 binding to B27 inhibited NK IFN-γ secretion and promoted greater survival of KIR3DL2(+) CD4 T and NK cells than binding to other HLA-class I. KIR3DL2(+) T cells from B27(+) SpA patients proliferated more in response to Ag presented by syngeneic APC than the same T cell subset from healthy and disease controls. Our results suggest that expansion of KIR3DL2-expressing leukocytes observed in B27(+) SpA may be explained by the stronger interaction of KIR3DL2 with B27 FHC.


Subject(s)
HLA-B27 Antigen/metabolism , Receptors, KIR3DL2/metabolism , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/metabolism , Antigens/immunology , Cell Line , Cell Survival/immunology , Cells, Cultured , HLA-A3 Antigen/immunology , HLA-A3 Antigen/metabolism , HLA-B27 Antigen/chemistry , HLA-B27 Antigen/immunology , HLA-B35 Antigen/immunology , HLA-B35 Antigen/metabolism , HLA-B7 Antigen/immunology , HLA-B7 Antigen/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Interferon-gamma/biosynthesis , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Protein Binding , Protein Multimerization , Receptors, KIR3DL2/genetics , Receptors, KIR3DL2/immunology , Spondylitis, Ankylosing/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
Arthritis Rheum ; 64(10): 3139-49, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22576154

ABSTRACT

OBJECTIVE: Spondylarthritides (SpA), including ankylosing spondylitis (AS), are common inflammatory rheumatic diseases that are strongly associated with positivity for the HLA class I allotype B27. HLA-B27 normally forms complexes with ß(2) -microglobulin (ß(2) m) and peptide to form heterotrimers. However, an unusual characteristic of HLA-B27 is its ability to form ß(2) m-free heavy chain homodimers (HLA-B27(2) ), which, unlike classic HLA-B27, bind to killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). Binding of HLA-B27(2) to KIR-3DL2-positive CD4+ T and natural killer (NK) cells stimulates cell survival and modulates cytokine production. This study was undertaken to produce an antibody to HLA-B27(2) in order to confirm its expression in SpA and to inhibit its proinflammatory properties. METHODS: We generated monoclonal antibodies by screening a human phage display library positively against B27(2) and negatively against B27 heterotrimers. Specificity was tested by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR) assay, and fluorescence-activated cell sorting (FACS) analysis of B27(2) -expressing cell lines and peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) from patients with SpA. Functional inhibition of KIR-3DL2-B27(2) interactions was tested using cell lines and PBMCs from patients with SpA. RESULTS: Monoclonal antibody HD6 specifically recognized recombinant HLA-B27(2) by ELISA and by SPR assay. HD6 bound to cell lines expressing B27(2) . FACS revealed binding of HD6 to PBMCs and SFMCs from patients with AS but not from controls. HD6 inhibited both the binding of HLA-B27(2) to KIR-3DL2 and the survival and proliferation of KIR-3DL2-positive NK cells. Finally, HD6 inhibited production of the proinflammatory disease-associated cytokine interleukin-17 by PBMCs from patients with AS. CONCLUSION: These results demonstrate that antibody HD6 has potential for use in both the investigation and the treatment of AS and other B27-associated spondylarthritides.


Subject(s)
HLA-B27 Antigen/immunology , Inflammation/immunology , Killer Cells, Natural/immunology , Spondylarthritis/immunology , T-Lymphocytes/immunology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Cell Line , HLA-B27 Antigen/metabolism , Humans , Inflammation/metabolism , Killer Cells, Natural/metabolism , Spondylarthritis/metabolism , T-Lymphocytes/metabolism
12.
J Immunol ; 188(12): 6184-93, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22593621

ABSTRACT

Possession of HLA-B27 (B27) strongly predisposes to the development of spondyloarthritis. B27 forms classical heterotrimeric complexes with ß(2)-microglobulin (ß2m) and peptide and (ß2m free) free H chain (FHC) forms including B27 dimers (termed B27(2)) at the cell surface. In this study, we characterize the interaction of HLA-B27 with LILR, leukocyte Ig-like receptor (LILR)B1 and LILRB2 immune receptors biophysically, biochemically, and by FACS staining. LILRB1 bound to B27 heterotrimers with a K(D) of 5.3 ± 1.5 µM but did not bind B27 FHC. LILRB2 bound to B27(2) and B27 FHC and B27 heterotrimers with K(D)s of 2.5, 2.6, and 22 ± 6 µM, respectively. Domain exchange experiments showed that B27(2) bound to the two membrane distal Ig-like domains of LILRB2. In FACS staining experiments, B27 dimer protein and tetramers stained LILRB2 transfectants five times more strongly than B27 heterotrimers. Moreover, LILRB2Fc bound to dimeric and other B27 FHC forms on B27-expressing cell lines more strongly than other HLA-class 1 FHCs. B27-transfected cells expressing B27 dimers and FHC inhibited IL-2 production by LILRB2-expressing reporter cells to a greater extent than control HLA class I transfectants. B27 heterotrimers complexed with the L6M variant of the GAG KK10 epitope bound with a similar affinity to complexes with the wild-type KK10 epitope (with K(D)s of 15.0 ± 0.8 and 16.0 ± 2.0 µM, respectively). Disulfide-dependent B27 H chain dimers and multimers are stronger ligands for LILRB2 than HLA class I heterotrimers and H chains. The stronger interaction of B27 dimers and FHC forms with LILRB2 compared with other HLA class I could play a role in spondyloarthritis pathogenesis.


Subject(s)
HLA-B27 Antigen/metabolism , Immunoglobulin Heavy Chains/metabolism , Membrane Glycoproteins/metabolism , Protein Multimerization , Receptors, Immunologic/metabolism , Antigen Presentation/immunology , Flow Cytometry , HLA Antigens/metabolism , HLA-B27 Antigen/chemistry , Humans , Jurkat Cells , Ligands , Lymphocyte Activation/immunology , Spondylarthritis/immunology , Spondylarthritis/metabolism , Surface Plasmon Resonance
13.
J Immunol ; 186(4): 2672-80, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21248258

ABSTRACT

CD4 Th cells producing the proinflammatory cytokine IL-17 (Th17) have been implicated in a number of inflammatory arthritides including the spondyloarthritides. Th17 development is promoted by IL-23. Ankylosing spondylitis, the most common spondyloarthritis (SpA), is genetically associated with both HLA-B27 (B27) and IL-23R polymorphisms; however, the link remains unexplained. We have previously shown that B27 can form H chain dimers (termed B27(2)), which, unlike classical HLA-B27, bind the killer-cell Ig-like receptor KIR3DL2. In this article, we show that B27(2)-expressing APCs stimulate the survival, proliferation, and IL-17 production of KIR3DL2(+) CD4 T cells. KIR3DL2(+) CD4 T cells are expanded and enriched for IL-17 production in the blood and synovial fluid of patients with SpA. Despite KIR3DL2(+) cells comprising a mean of just 15% of CD4 T in the peripheral blood of SpA patients, this subset accounted for 70% of the observed increase in Th17 numbers in SpA patients compared with control subjects. TCR-stimulated peripheral blood KIR3DL2(+) CD4 T cell lines from SpA patients secreted 4-fold more IL-17 than KIR3DL2(+) lines from controls or KIR3DL2(-) CD4 T cells. Strikingly, KIR3DL2(+) CD4 T cells account for the majority of peripheral blood CD4 T cell IL-23R expression and produce more IL-17 in the presence of IL-23. Our findings link HLA-B27 with IL-17 production and suggest new therapeutic strategies in ankylosing spondylitis/SpA.


Subject(s)
HLA-B27 Antigen/physiology , Protein Multimerization/immunology , Receptors, KIR3DL2/biosynthesis , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/pathology , Th17 Cells/immunology , Th17 Cells/pathology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Line , Cell Proliferation , Cell Survival/immunology , Coculture Techniques , Female , HLA-B27 Antigen/biosynthesis , HLA-B27 Antigen/chemistry , Humans , Interleukin-17/biosynthesis , Lymphocyte Activation/immunology , Male , Receptors, Interleukin/biosynthesis , Receptors, Interleukin/blood , Spondylitis, Ankylosing/metabolism , Superantigens/pharmacology , Th17 Cells/metabolism
14.
Inorg Chem ; 47(17): 7453-5, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18665586

ABSTRACT

Ultraviolet (UV) photolysis of (mu-S(CH 2) 3S)Fe 2(CO) 6 ( 1), a model compound of the Fe-hydrogenase enzyme system, has been carried out. When ultrafast UV-pump infrared (IR)-probe spectroscopy, steady-state Fourier transform IR spectroscopic methods, and density functional theory simulations are employed, it has been determined that irradiation of 1 in an alkane solution at 350 nm leads to the formation of two isomers of the 16-electron complex (mu-S(CH 2) 3S)Fe 2(CO) 5 within 50 ps with evidence of a weakly associated solvent adduct complex. 1 is subsequently recovered on timescales covering several minutes. These studies constitute the first attempt to study the photochemistry and reactivity of these enzyme active site models in solution following carbonyl ligand photolysis.


Subject(s)
Hydrogenase/chemistry , Iron Compounds/chemistry , Iron-Sulfur Proteins/chemistry , Sulfides/chemistry , Catalytic Domain , Hydrogenase/metabolism , Iron-Sulfur Proteins/metabolism , Photochemistry , Photolysis , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Time Factors
15.
Environ Manage ; 35(3): 311-29, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15925974

ABSTRACT

Environmental Management Systems (EMS) are being trialed for Australian agricultural industries as society becomes more concerned about agriculture's environmental performance. EMS is a structured approach used by farm businesses to assess, monitor, and improve environmental performance. Use of EMS in conjunction with other policy tools (such as financial incentives and regulation) in agriculture could enhance management of both on-farm and off-farm environmental issues. Based on the international standard ISO14001, EMS was designed to be applied at the individual business level. However, governments in Australia are exploring its potential to be applied at a catchment scale, among other things, for the purpose of linking farm-level actions to catchment targets. In Australia, governments and catchment management bodies are using Integrated Catchment Management (ICM) as the framework to try to achieve environmental targets set out in catchment plans. In this article, we compare aspects of the EMS and ICM frameworks and comment on the potential of using EMS to achieve catchment-scale environmental outcomes. We conclude that EMS could be a useful policy tool to improve farm management and to contribute, in part, to better off-site outcomes at the catchment/landscape scale. Recommendations on the use of EMS at the catchment scale are discussed. These include using an educational approach for EMS delivery, linking the EMS process to catchment targets, and ensuring catchment targets are realistic and achievable.


Subject(s)
Agriculture , Conservation of Natural Resources , Environment , Australia , Environmental Pollution/prevention & control , Government , Interinstitutional Relations , Policy Making
SELECTION OF CITATIONS
SEARCH DETAIL
...