Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Am Nat ; 197(3): 392, 2021 03.
Article in English | MEDLINE | ID: mdl-33625972
2.
Am Nat ; 180(4): 496-510, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22976012

ABSTRACT

The evolution of group living is regarded as a major evolutionary transition and is commonly met with correlated shifts in ancillary characters. We tested for associations between social tendency and a myriad of abiotic variables (e.g., temperature and precipitation) and behavioral traits (e.g., boldness, activity level, and aggression) in a clade of spiders that exhibit highly variable social structures (genus Anelosimus). We found that, relative to their subsocial relatives, social species tended to exhibit reduced aggressiveness toward prey, increased fearfulness toward predators, and reduced activity levels, and they tended to occur in warm, wet habitats with low average wind velocities. Within-species variation in aggressiveness and boldness was also positively associated with sociality. We then assessed the functional consequences of within-species trait variation on reconstituted colonies of four test species (Anelosimus eximius, Anelosimus rupununi, Anelosimus guacamayos, and Anelosimus oritoyacu). We used colonies consisting of known ratios of docile versus aggressive individuals and group foraging success as a measure of colony performance. In all four test species, we found that groups composed of a mixture of docile and aggressive individuals outperformed monotypic groups. Mixed groups were more effective at subduing medium and large prey, and mixed groups collectively gained more mass during shared feeding events. Our results suggest that the iterative evolution of depressed aggressiveness and increased within-species behavioral variation in social spiders is advantageous and could be an adaptation to group living that is analogous to the formation of morphological castes within the social insects.


Subject(s)
Behavior, Animal , Biological Evolution , Social Behavior , Spiders/physiology , Aggression , Animals , Female , Phylogeny , Spiders/classification
3.
Behav Ecol Sociobiol ; 65(5): 1055-1060, 2011 May.
Article in English | MEDLINE | ID: mdl-21625651

ABSTRACT

The social spider Anelosimus studiosus exhibits a behavioral polymorphism where colony members express either a passive, tolerant behavioral tendency (social) or an aggressive, intolerant behavioral tendency (asocial). Here we test whether asocial individuals act as colony defenders by deflecting the suite of foreign (i.e., heterospecific) spider species that commonly exploit multi-female colonies. We (1) determined whether the phenotypic composition of colonies is associated with foreign spider abundance, (2) tested whether heterospecific spider abundance and diversity affect colony survival in the field, and (3) performed staged encounters between groups of A. studiosus and their colony-level predator Agelenopsis emertoni (A. emertoni)to determine whether asocial females exhibit more defensive behavior. We found that larger colonies harbor more foreign spiders, and the number of asocial colony members was negatively associated with foreign spider abundance. Additionally, colony persistence was negatively associated with the abundance and diversity of foreign spiders within colonies. In encounters with a colony-level predator, asocial females were more likely to exhibit escalatory behavior, and this might explain the negative association between the frequency of asocial females and the presence of foreign spider associates. Together, our results indicate that foreign spiders are detrimental to colony survival, and that asocial females play a defensive role in multi-female colonies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00265-010-1112-z) contains supplementary material, which is available to authorized users.

4.
Proc Biol Sci ; 278(1709): 1209-15, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-20943687

ABSTRACT

How task specialization, individual task performance and within-group behavioural variation affects fitness is a longstanding and unresolved problem in our understanding of animal societies. In the temperate social spider, Anelosimus studiosus, colony members exhibit a behavioural polymorphism; females either exhibit an aggressive 'asocial' or docile 'social' phenotype. We assessed individual prey-capture success for both phenotypes, and the role of phenotypic composition on group-level prey-capture success for three prey size classes. We then estimated the effect of group phenotypic composition on fitness in a common garden, as inferred from individual egg-case masses. On average, asocial females were more successful than social females at capturing large prey, and colony-level prey-capture success was positively associated with the frequency of the asocial phenotype. Asocial colony members were also more likely to engage in prey-capture behaviour in group-foraging situations. Interestingly, our fitness estimates indicate females of both phenotypes experience increased fitness when occupying colonies containing unlike individuals. These results imply a reciprocal fitness benefit of within-colony behavioural variation, and perhaps division of labour in a spider society.


Subject(s)
Behavior, Animal , Social Behavior , Spiders/physiology , Animals , Female , Male , Phenotype , Population Dynamics
5.
J Evol Biol ; 23(4): 748-56, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20149021

ABSTRACT

Correlations in behavioural traits across time, situation and ecological context (i.e. 'behavioural syndromes' or 'personality') have been documented for a variety of behaviours, and in diverse taxa. Perhaps the most controversial inference from the behavioural syndromes literature is that correlated behaviour may act as an evolutionary constraint and evolutionary change in one's behaviour may necessarily involve shifts in others. We test the two predictions of this hypothesis using comparative data from eighteen populations of the socially polymorphic spider, Anelosimus studiosus (Araneae, Theriidae). First, we ask whether geographically distant populations share a common syndrome. Second, we test whether population differences in behaviour are correlated similarly to within-population trait correlations. Our results reveal that populations separated by as much as 36 degrees latitude shared similar syndromes. Furthermore, population differences in behaviour were correlated in the same manner as within-population trait correlations. That is, population divergence tended to be along the same axes as within-population covariance. Together, these results suggest a lack of evolutionary independence in the syndrome's constituent traits.


Subject(s)
Behavior, Animal/physiology , Spiders/physiology , Aggression , Animals , Biological Evolution , Demography , Social Behavior , Spiders/genetics
6.
Mol Ecol ; 19(4): 810-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20074313

ABSTRACT

The evolution of sociality remains a challenge in evolutionary biology and a central question is whether association between kin is a critical factor favouring the evolution of cooperation. This study examines genetic structure of Anelosimus studiosus, a spider exhibiting polymorphic social behaviour. Two phenotypes have been identified: an 'asocial' phenotype with solitary female nests and a 'social' phenotype with multi-female/communal nests. To address the questions of whether these phenotypes are differentiated populations and whether cooperative individuals are closely related, we used microsatellites to analyse individuals from both communal and solitary nests. We found no evidence of differentiation between social and solitary samples, implying high rates of interbreeding. This is consistent with the hypothesis that these phenotypes coexist as a behavioural polymorphism within populations. Pairwise relatedness coefficients were used to test whether cooperating individuals are more closely related than expected by chance. Pairwise relatedness of females sharing communal webs averaged 0.25, the level expected for half-siblings and significantly more closely related than random pairs from the population. Solitary females collected at similar distances to the communal spider pairs were also more closely related than expected by chance (mean relatedness = 0.18), but less related than social pairs. These results imply that low dispersal contributes to increase likelihood of interaction between kin, but relatedness between social pairs is not explained by spatial structure alone. We propose that these phenotypes represent stages in the evolution of sociality, where viscous population structure creates opportunities for kin selection and cooperation is favoured under certain environmental conditions.


Subject(s)
Genetic Variation , Genetics, Population , Social Behavior , Spiders/genetics , Animals , Female , Microsatellite Repeats , Phenotype , Sequence Analysis, DNA
7.
Evolution ; 63(11): 2966-73, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19619222

ABSTRACT

Although several studies have demonstrated that frequency-dependent effects can promote the maintenance of cooperative behavior in microbes, experimental evidence of frequency-dependent effects in cooperative animal societies is rare. We staged mixed phenotype feeding bouts in the spider Anelosimus studiosus, which shows a within-population social polymorphism, to determine how phenotype frequency affects the foraging success of the social (cooperative) and asocial (cheater) phenotypes. Foraging performance was inferred from average change in percent mass for the respective phenotypes after staged group foraging events. We then performed a field census of multifemale colonies of A. studiosus to determine the phenotypic composition of naturally occurring colonies. Our data indicate that asocial (i.e., cheater) individuals experience negative frequency-dependent foraging success in staged foraging contests. Asocial individuals outperform social individuals when their representation is low, but lose this competitive advantage as their relative numbers increase. Naturally occurring colonies, on average, contained 58.33% social and 41.67% asocial individuals.


Subject(s)
Feeding Behavior , Social Behavior , Spiders/physiology , Animals , Female , Spiders/genetics
8.
Mol Phylogenet Evol ; 36(1): 42-57, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15904855

ABSTRACT

Intra- and interspecific relationships of 12 out of 13 described species as well as a potential new species in the spider genus Agelenopsis (Araneae: Agelenidae) were analyzed using sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and 16S ribosomal RNA. Approximately half of the species examined formed well-supported monophyletic groups, whereas the rest of the species were part of well-supported monophyletic species groups. Rather than viewing cases where species were not identified as being monophyletic as poor taxonomy, these cases more likely represent recent speciation and offer insights into the process of speciation. The clade with the lowest levels of interspecific sequence divergence was found in eastern North America, whereas western species displayed much higher levels of interspecific divergence. These patterns appear to extend below the species level as well, with southwestern species exhibiting the highest levels of intraspecific sequence divergence and geographic structuring. The relationship between Agelenopsis and Barronopsis, a genus once considered a sub-genus of Agelenopsis, was also examined. The two genera are reciprocally monophyletic but more generic level sampling is needed to confirm an apparent sister relationship between the two.


Subject(s)
Spiders/classification , Spiders/genetics , Animals , Bayes Theorem , Electron Transport Complex IV/genetics , Genetic Variation , Haplotypes , North America , Phylogeny , RNA, Ribosomal, 16S/genetics , Species Specificity , Spiders/enzymology
9.
Mol Ecol ; 13(11): 3453-65, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15488003

ABSTRACT

The influence of historical climatic vs. geological changes on species diversification patterns was investigated in a widely distributed North American desert spider, Agelenopsis aperta (Araneae: Agelenidae), with particular reference to Pleistocene glacial cycles and earlier patterns of mountain building. Levels of sequence divergence obtained from the mitochondrial gene, cytochrome oxidase I, dated to the Pleistocene, eliminating Rocky Mountain orogeny as a cause of diversification, as orogeny ended 4 million years ago. The results of phylogenetic and network analyses showed the presence of three geographically defined clades, which were consistent with the presence of at least three glacial refugia: (i) east of the Rocky Mountains; (ii) between the Rocky Mountains and Sierra Nevadas; and (iii) west of the Sierra Nevadas. In addition, populations within the Rocky Mountains exhibited significantly lower genetic diversity than populations east of the Rocky Mountains and the haplotypes found within the Rockies were a subset of eastern haplotypes. These patterns suggest that a post-Pleistocene range expansion occurred out of an eastern glacial refugium into the Rocky Mountains. Examination of phylogeographical studies of other North American desert taxa indicated that mountain building explained diversification patterns more effectively for some taxa but Pleistocene climate change was more important for others, including A. aperta.


Subject(s)
Evolution, Molecular , Genetic Variation , Spiders/genetics , Animals , DNA, Mitochondrial/analysis , Electron Transport Complex IV/genetics , Environment , Haplotypes , Ice Cover , Mexico , Phylogeny , Sequence Analysis, DNA , Southwestern United States
10.
Oecologia ; 80(4): 533-539, 1989 Sep.
Article in English | MEDLINE | ID: mdl-28312840

ABSTRACT

Optimal foraging theory is based on the assumption that at least some aspects of foraging behavior are genetically determined (Pyke et al. 1977; Kamil and Sargent 1980; Pyke 1984). Nonetheless, very few studies have examined the role of genetics in foraging behavior. Here, we report on geographical differences in the foraging behavior of a spider (Agelenopsis aperta) and investigate whether these differences are genetically determined. Field studies were conducted on two different populations of A. aperta: one residing in a desert riparian habitat, and the other in a desert grassland habitat. Data from the spiders' natural encounters with prey demonstrated that grassland spiders exhibited a higher frequency of attack than riparian spiders towards 13 of 15 prey types, including crickets and ants. Grassland spiders also had shorter latencies to attack 12 of 15 prey types, including crickets and ants, than riparian spiders. Subsequently, we reared grassland and riparian spiders under controlled conditions in the laboratory and observed their interactions with prey to determine whether the populational differences we found in the field could be genetic. Again, grassland spiders showed a shorter latency to attack prey (crickets, ants) than riparian spiders. These latencies were not significantly affected by the hunger state or age of the spiders. Finally, we reared a second generation (F2) of grassland and riparian spiders in the laboratory and observed their interactions with prey to determine whether the populational differences in the previous generation were due to genetic effects or maternal effects. As before, grassland spiders exhibited a shorter latency to attack prey (crickets) than riparian spiders. We conclude that the foraging differences we observed between these two populations of A. aperta are genetically determined. These differences probably have resulted from either natural selection acting directly on attack frequency and the latency to attack prey, or natural selection acting on traits which are genetically correlated with these aspects of foraging behavior.

11.
Evolution ; 42(1): 173-183, 1988 Jan.
Article in English | MEDLINE | ID: mdl-28563857

ABSTRACT

Dispersal experiments and gel electrophoresis of allozyme polymorphisms were used to investigate the selective mode underlying cooperative behavior in the rainforest spider, Agelena consociata. Previous work has indicated that individual selection alone does not explain the cooperative and even altruistic behavior noted for this African species, which exists in groups of up to hundreds of adults. We found no evidence for active dispersal by reproductives or any age class of this spider. Nest fragmentation by falling tree limbs and storms is indicated as the cause of new nest formation within local areas, while passive dispersal by vertebrate carriers that either have some association with the nests (bats) or move through them is indicated as the probable mode of longer-distance dispersal. The population-genetic structure observed for A. consociata supports the data obtained on dispersal. Wright's FST statistic and G tests for genetic heterogeneity indicate that the populations are subdivided into genetically heterogeneous colonies. Comparisons utilizing Nei's genetic distance show colonies separated by as few as 30 m to be as genetically distinct as are colonies separated by many kilometers. There is also a marked scarcity of heterozygotes, and individuals within nests and associated colonies are genetically related about as much as are full siblings. The results of these analyses indicate that kin selection or some type of family-group selection may have been important in the evolution of cooperative behavior in the species.

SELECTION OF CITATIONS
SEARCH DETAIL
...