Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nutrients ; 15(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764658

ABSTRACT

Choline plays many important roles, including the synthesis of acetylcholine, and may affect muscle responses to exercise. We previously observed correlations between low choline intake and reduced gains in strength and lean mass following a 12-week resistance exercise training (RET) program for older adults. To further explore these findings, we conducted a randomized controlled trial. Three groups of 50-to-69-year-old healthy adults underwent a 12-week RET program (3x/week, 3 sets, 8-12 reps, 70% of maximum strength (1RM)) and submitted >48 diet logs (>4x/week for 12 weeks). Participants' diets were supplemented with 0.7 mg/kg lean/d (low, n = 13), 2.8 mg/kg lean/d (med, n = 11), or 7.5 mg/kg lean/d (high, n = 13) of choline from egg yolk and protein powder. The ANCOVA tests showed that low choline intake, compared with med or high choline intakes, resulted in significantly diminished gains in composite strength (leg press + chest press 1RM; low, 19.4 ± 8.2%; med, 46.8 ± 8.9%; high, 47.4 ± 8.1%; p = 0.034) and thigh-muscle quality (leg press 1RM/thigh lean mass; low, 12.3 ± 9.6%; med/high, 46.4 ± 7.0%; p = 0.010) after controlling for lean mass, protein, betaine, and vitamin B12. These data suggest that low choline intake may negatively affect strength gains with RET in older adults.


Subject(s)
Choline , Resistance Training , Humans , Aged , Middle Aged , Acetylcholine , Betaine , Correlation of Data
2.
Front Nutr ; 10: 1208890, 2023.
Article in English | MEDLINE | ID: mdl-37426184

ABSTRACT

Introduction: The purpose of this study was to examine the influence of nutritional intake on visual perceptual-cognitive performance (VCP) in young healthy adults. Methods: Ninety-eight healthy men (n = 38) and women (n = 60) aged 18-33 years participated and maintained their usual dietary intake throughout the study. VCP was measured using the NeuroTracker™ CORE (NT) 3-Dimensional (3-D) software program (15 training sessions) over a 15-day period. Food logs and extensive lifestyle measures including body composition, cardiovascular health, sleep and exercise patterns, and general readiness to perform were collected. Mean intake from 10 food logs collected over the 15 days were analyzed using Nutribase software. Statistical analyses were performed in SPSS using repeated measures ANOVA including significant covariates when appropriate. Results: Males consumed significantly more calories, macronutrients, cholesterol, choline, and zinc and performed significantly better on VCP than the females. Participants who consumed more than 40% of kcals from carbohydrates (p = 0.038), less than 24% of kcals from protein (p = 0.009), more than 2,000 µg/day lutein/zeaxanthin or more than 1.8 mg/ day vitamin B2 performed significantly better on VCP than those who consumed less than those amounts, respectively. Discussion: VCP is an important dimension of cognitive function and in the present study is influenced by higher carbohydrate, lutein/ zeaxanthin, and vitamin B2 dietary intake while high protein consumption and the female sex negatively impacted VCP.

3.
Front Nutr ; 10: 1120303, 2023.
Article in English | MEDLINE | ID: mdl-37275641

ABSTRACT

Introduction: Electronic sports, termed esports, is a growing athletic activity in which high levels of attention and cognitive performance are required. With its increasing popularity and competitiveness, interest in strategies to improve performance have emerged. Improving esports athlete performance, namely cognitive endurance, and resilience, may lie in nutritional or lifestyle factors. The Nutrition, Vision, and Cognition in Sport Studies (IONSport) investigated nutritional and behavioral factors that can influence cognition via 3-dimensional multiple objects tracking test (3DMOT) via Neurotracker X (NTx) software. The purpose of this study was to characterize the lifestyle of high level esports athletes with detailed nutrition, sleep, and physical activity assessments, and their association to gaming related cognitive performance. Methods: 103 male and 16 elite female esports athletes aged 16 to 35 years old completed surveys, food records, and cognitive testing sessions over 10 days. Participants were instructed to maintain their normal dietary and lifestyle habits. Results: There were positive significant associations between average NTx scores and the following nutrients: magnesium, phosphorous, potassium, sodium, zinc, selenium, thiamin, niacin, vitamins B6 and B12, folate, cholesterol, saturated, polyunsaturated, and monounsaturated fats, omega-6 and omega-3 fatty acids, and choline. Majority of participants did not meet recommended dietary allowances (RDAs) for these micronutrients nor the recommended intakes for dairy, fruit, and vegetables. There was a significant (p = 0.003) positive (r = 0.272) association between total vegetable intake and average NTx score. There was a significant negative association (p = 0.015) with our final sustain session, which measured cognitive resilience, and the Stanford Sleepiness Scale score. Repeated measures analysis was done with these groups over the 18 core NTx sessions. There were significant (p = 0.018) differences between the two groups with those who consumed the recommended amount of protein or more performing significantly better on NTx over the 18 sessions than those that did not consume enough protein. Those who consumed the recommended intakes for riboflavin, phosphorous, vitamin B12, and selenium performed significantly better over the 18 core NTx sessions than those that did not meet the recommended amounts. Discussion: The need for a nutrition intervention that is rich in protein, vitamins, and minerals is warranted in this population.

4.
Front Physiol ; 13: 1033585, 2022.
Article in English | MEDLINE | ID: mdl-36388131

ABSTRACT

There is strong evidence that physical activity has a profound protective effect against multiple types of cancer. Here, we show that this effect may be mediated by factors released from skeletal muscle during simulated exercise, in situ, which suppress canonical anabolic signaling in breast cancer. We report attenuated growth of MCF7 breast cancer cells in the presence of a rodent-derived exercise conditioned perfusate, independent of prior exercise training. This reduction was concomitant with increased levels of DEPTOR protein and reduced mTOR activity.

5.
J Strength Cond Res ; 36(11): 3074-3080, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-33993156

ABSTRACT

ABSTRACT: Riechman, SE and Lee, CW. Oral contraceptive use impairs muscle gains in young women. J Strength Cond Res 36(11): 3074-3080, 2022-Many active young women use oral contraceptives (OCs), yet their effects on the body composition and exercise performance have not been thoroughly studied. We examined the effects of OCs on muscle responses to a standardized resistance exercise training (RET) program. Two groups of young healthy women (18-29 years old, non-OC: n = 38, OC: n = 34) underwent 10 weeks of whole-body RET (3 days·wk -1 , 3 sets, 6-10 repetitions, at 75% of maximum strength, 13 exercises). Body composition was determined using hydrostatic weighing, and blood samples were taken before and after training to measure dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), IGF-1, and cortisol levels. There were significant differences in lean mass gains between the groups (non-OC: 3.5 ± 0.4% vs. OC: 2.1 ± 0.5% and non-OC: 1.6 ± 0.2 kg vs. OC: 1.0 ± 0.2 kg, p < 0.05). Plasma concentrations of DHEA, DHEAS, and IGF-1 were significantly lower, and cortisol levels were higher in the OC group before and after training ( p < 0.05). In addition, there were significant differences in lean mass gains depending on the androgenicity of progestin between the non-OC and medium-high groups (non-OC: 1.6 ± 0.2 kg, Low = 1.1 ± 0.2 kg, med-high = 0.3 ± 0.5 kg, p < 0.05). Oral contraceptive use impaired lean mass gains in young women after RET and was associated with lower DHEA, DHEAS, and IGF-1 and higher cortisol. The diminished lean mass gain may be related to the effect of OCs on anabolic and catabolic hormone levels or the androgenicity of progestin that may bind to androgen receptors and inhibit its function.


Subject(s)
Contraceptives, Oral , Muscle, Skeletal , Adolescent , Adult , Female , Humans , Young Adult , Contraceptives, Oral/adverse effects , Dehydroepiandrosterone , Dehydroepiandrosterone Sulfate , Hydrocortisone , Insulin-Like Growth Factor I , Progestins , Receptors, Androgen , Muscle, Skeletal/physiology
6.
Biology (Basel) ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34827075

ABSTRACT

BACKGROUND: The exhaustive series of tests undergone by young athletes of Olympic rowing prior to important competitions imply loads of physical stress that can ultimately impact on mood and motivation, with negative consequences for their training and performance. Thus, it is necessary to develop a tool that uses only the performance of short distances but is highly predictive, offering a time expectancy with high reliability. Such a test must use variables that are easy to collect with high practical applicability in the daily routine of coaches. OBJECTIVE: The objective of the present study was to develop a mathematical model capable of predicting 2000 m rowing performance from a maximum effort 100 m indoor rowing ergometer (IRE) test in young rowers. METHODS: The sample consisted of 12 male rowing athletes in the junior category (15.9 ± 1.0 years). A 100 m time trial was performed on the IRE, followed by a 2000 m time trial 24-h later. RESULTS: The 2000 m mathematical model to predict performance in minutes based on the maximum 100 m test demonstrated a high correlation (r = 0.734; p = 0.006), strong reliability index (ICC: 0.978; IC95%: [0.960; 0.980]; p = 0.001) and was within usable agreement limits (Bland -Altman Agreement: -0.60 to 0.60; 95% CI [-0.65; 0.67]). CONCLUSION: The mathematical model developed to predict 2000 m performance is effective and has a statistically significant reliability index while being easy to implement with low cost.

7.
Adv Exp Med Biol ; 1332: 129-149, 2021.
Article in English | MEDLINE | ID: mdl-34251642

ABSTRACT

Amino acids are integral for human health, influencing an array of physiological processes from gene expression to vasodilation to the immune response. In accordance with this expansive range of unique functions, the tissues of the body engage in a complex interplay of amino acid exchange and metabolism to respond to the organism's dynamic needs for a range of nitrogenous products. Interorgan amino acid metabolism is required for numerous metabolic pathways, including the synthesis of functional amino acids like arginine, glutamate, glutamine, and glycine. This physiological process requires the cooperative handling of amino acids by organs (e.g., the small intestine, skeletal muscle, kidneys, and liver), as well as the complete catabolism of nutritionally essential amino acids such as the BCAAs, with their α-ketoacids shuttled from muscle to liver. These exchanges are made possible by several mechanisms, including organ location, as well as the functional zonation of enzymes and the cell-specific expression of amino acid transporters. The cooperative handling of amino acids between the various organs does not appear to be under the control of any centralized regulation, but is instead influenced by factors such as fluctuations in nutrient availability, hormones, changes associated with development, and altered environmental factors. While the normal function of these pathways is associated with health and homeostasis, affected by physical activity, diet and body composition, dysregulation is observed in numerous disease states, including cardiovascular disease and cancer cachexia, presenting potential avenues for the manipulation of amino acid consumption as part of the therapeutic approach to these conditions in individuals.


Subject(s)
Amino Acids , Arginine , Diet , Glutamine , Humans , Liver
8.
Sports Med Health Sci ; 3(1): 34-39, 2021 Mar.
Article in English | MEDLINE | ID: mdl-35782675

ABSTRACT

The purpose of this study was to develop an equation to predict strength for seven common resistance training exercises using anthropometric and demographic measures. One-hundred forty-seven healthy adults (74 males, 73 females, 35 ±â€¯12 yr, 174 ±â€¯10 cm, 88 ±â€¯19 kg) volunteered to participate. Body composition values (regional/total) and body dimensions were assessed using dual-energy x-ray absorptiometry (DEXA). Subjects underwent the following maximal strength assessments: Leg Press, Chest Press, Leg Curl, Lat Pulldown, Leg Extension, Triceps Pushdown, and Biceps Curl. Multiple linear regression with stepwise removal was used to determine the best model to predict maximal strength for each exercise. Independent predictor variables identified (p < 0.05) were height (cm); weight (kg); BMI; age; sex (0 = F,1 = M); regional lean masses (LM,kg); fat mass (FM,kg); fat free mass (FFM,kg); percent fat (%BF); arm, leg, and trunk lengths (AL, LL, TL; cm); and shoulder width (SW,cm). Analyses were performed with and without regional measures to accommodate scenarios where DEXA is unavailable. All models presented were significant (p < 0.05, R 2 = 0.68-0.83), with regional models producing the greatest accuracy. Results indicate that maximal strength for individual resistance exercises can be reasonably estimated in adults.

9.
Sports Med Health Sci ; 2(4): 195-201, 2020 Dec.
Article in English | MEDLINE | ID: mdl-35782997

ABSTRACT

The process and regulation of cellular metabolism are extremely complex and accomplished through multiple signalling pathways that operate in parallel, and often experience significant overlap in upstream and downstream a signal transduction. Despite this complexity, single pathway or even single protein activations are commonly used to extrapolate broad characterizations of cellular metabolism. Furthermore, multiple routes for peptide-chain translation initiation exist, some of which may be either exclusive or overlapping depending on the state and environment of the cell. While it may be highly impractical to account for every aspect of metabolic regulation and permutation of mRNA translation, it is important to acknowledge that investigations relating to these pathways are often incomplete and not necessarily indicative of the overall metabolic status. This becomes urgent when considering the role that cellular anabolism plays in both healthy cellular functions and the aetiology of several disease's altered metabolisms. This review describes recent advances in the understanding of cellular metabolic regulation, with specific focus given to the complexity of 'downstream' mRNA translation initiation through both mTOR-dependent and mTOR-independent signallings.

10.
Lipids Health Dis ; 18(1): 3, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30611265

ABSTRACT

BACKGROUND: The loss of muscle mass and concomitantly strength, poses a serious risk to the elderly and to astronauts. Dietary cholesterol (CL), in conjunction with resistance training (RT), has been strongly associated with improvements in lean mass. The purpose of this study was to examine the effects of two opposing environments on rat skeletal muscle: (1) hindlimb unloading and (2) CL and RT. METHODS: In protocol 1, 13 male Sprague-Dawley rats were unloaded for 28 days (HU; n = 6) or served as cage controls (CC; n = 7). In protocol 2, 42 rats were assigned to 1 of 6 groups: CC (n = 7), CC + CL (n = 4), RT controls (RTC; n = 7), RTC + CL (n = 8), RT (n = 8) and RT + CL (n = 8). RT/RTC consisted of squat-like exercise. RT had weights added progressively from 80 to 410 g over 5 weeks. CL was supplemented in the chow with either 180 ppm (controls) or 1800 ppm (CL). Lower limb muscles were harvested at the end of both protocols and analyzed by Western Blotting for sterol regulatory element-binding protein-2 (SREBP-2) and low-density lipoprotein-receptor (LDL-R) and protein synthesis. RESULTS: Gastrocnemius and plantaris masses and their body mass ratios were significantly lower in the HU rats than control rats. The RT rats gained significantly less body and lean mass than the RTC groups, but the plantar flexor muscles did not show any significant differences among groups. Moreover, RT groups had significantly higher plantaris mixed muscle fractional synthesis rate (FSR) than the RTC and CC animals, with the CL groups showing greater FSR than control rats. No significant differences among groups in SREBP-2 or LDL-R were observed in either protocol. CONCLUSIONS: These studies provide evidence for a relationship between skeletal muscle and cholesterol metabolism, but the exact nature of that association remains unclear.


Subject(s)
Cholesterol, Dietary/metabolism , Hindlimb Suspension , Muscle, Skeletal/drug effects , Physical Conditioning, Animal/physiology , Resistance Training/methods , Animals , Cholesterol, Dietary/administration & dosage , Gene Expression , Male , Muscle, Skeletal/physiology , Organ Size/drug effects , Rats , Rats, Sprague-Dawley , Receptors, LDL/genetics , Receptors, LDL/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
11.
Am J Phys Med Rehabil ; 97(8): 578-584, 2018 08.
Article in English | MEDLINE | ID: mdl-29547447

ABSTRACT

OBJECTIVE: The purpose of the study was to compare acute bouts of aquatic treadmill (ATM) and land treadmill (LTM) exercise on flow-mediated dilation, postexercise blood pressure, plasma nitrate/nitrite, and atrial natriuretic peptide in untrained, prehypertensive men. DESIGN: In a counterbalanced, crossover design, 19 untrained, prehypertensive men completed bouts of ATM and LTM on separate days. Flow-mediated dilation was measured pre-exercise and 1-hr postexercise. Blood samples were obtained pre-exercise and immediately postexercise and analyzed for plasma nitrate/nitrite and atrial natriuretic peptide. A magnitude-based inference approach to inference was used for statistical analysis. RESULTS: A possible clinically beneficial increase in flow-mediated dilation (1.2%, 90% confidence interval = -0.07% to 2.5%) was observed 1 hr after ATM. In contrast, a possible clinically harmful decrease in flow-mediated dilation (-1.3%, 90% confidence interval = -2.7% to 0.2%) was observed 1 hr after LTM. The magnitude of the postexercise systolic blood pressure reduction was greater after ATM (-4.9, SD = 2.9 mm Hg) than LTM (-2.6, SD = 2.5 mm Hg). Atrial natriuretic peptide increased 34.3 (SD = 47.0%) after ATM and decreased -9.0 (SD = 40.0%) after LTM. CONCLUSIONS: An acute bout of ATM induced a more favorable endothelial response and greater postexercise hypotensive response than LTM. These changes were associated with increased atrial natriuretic peptide levels after ATM.


Subject(s)
Blood Flow Velocity/physiology , Endothelium, Vascular/physiology , Exercise/physiology , Post-Exercise Hypotension/physiopathology , Vasodilation/physiology , Water , Adult , Atrial Natriuretic Factor/blood , Brachial Artery/diagnostic imaging , Brachial Artery/physiology , Cross-Over Studies , Humans , Male , Nitrates/blood , Nitrites/blood , Ultrasonography
12.
Annu Rev Nutr ; 36: 17-43, 2016 07 17.
Article in English | MEDLINE | ID: mdl-27215586

ABSTRACT

Muscle protein synthesis (MPS) fluctuates widely over the course of a day and is influenced by many factors. The time course of MPS responses to exercise and the influence of training and nutrition can only be pieced together from several different investigations and methods, many of which create unnatural experimental conditions. Measurements of cumulative MPS, the sum synthesis over an extended period, using deuterium oxide have been shown to accurately reflect muscle responses and may allow investigations of the response to exercise, total protein intake requirements, and interaction with protein timing in free-living experimental conditions; these factors have yet to be carefully integrated. Such studies could include clinical and athletic populations to integrate nutritional and exercise recommendations and help guide their revisions to optimize the skeletal muscle function that is so important to overall health.


Subject(s)
Dietary Proteins/metabolism , Evidence-Based Medicine , Exercise , Gene Expression Regulation , Muscle Proteins/biosynthesis , Nutritional Requirements , Precision Medicine , Activities of Daily Living , Animals , Dietary Proteins/administration & dosage , Humans , Muscle Development , Practice Guidelines as Topic , Protein Stability , Resistance Training , Sports Nutritional Physiological Phenomena
13.
J Int Soc Sports Nutr ; 13: 22, 2016.
Article in English | MEDLINE | ID: mdl-27231439

ABSTRACT

BACKGROUND: The purpose of this study was to determine whether short-term supplementation of a powdered tart cherry supplement prior to and following stressful endurance exercise would affect markers of muscle damage, inflammation, oxidative stress, and/or muscle soreness. METHODS: 27 endurance-trained runners or triathlete (21.8 ± 3.9 years, 15.0 ± 6.0 % body fat, 67.4 ± 11.8 kg) men (n = 18) and women (n = 9) were matched based on average reported race pace, age, body mass, and fat free mass. Subjects were randomly assigned to ingest, in a double-blind manner, capsules containing 480 mg of a rice flour placebo (P, n = 16) or powdered tart cherries [CherryPURE®] (TC, n = 11). Subjects supplemented one time daily (480 mg/day) for 10-d, including race day, up to 48-hr post-run. Subjects completed a half-marathon run (21.1 km) under 2-hr (111.98 ± 11.9 min). Fasting blood samples and quadriceps muscle soreness ratings using an algometer with a graphic pain rating scale were taken pre-run, 60-min, 24 and 48-h post-run and analyzed by MANOVA with repeated measures. RESULTS: Subjects in the TC group averaged 13 % faster half-marathon race finish times (p = 0.001) and tended to have smaller deviations from predicted race pace (p = 0.091) compared to P. Attenuations in TC muscle catabolic markers were reported over time for creatinine (p = 0.047), urea/blood urea nitrogen (p = 0.048), total protein (p = 0.081), and cortisol (p = 0.016) compared to P. Despite lower antioxidant activity pre-run in TC compared to P, changes from pre-run levels revealed a linear increase in antioxidant activity at 24 and 48-h of recovery in TC that was statistically different (16-39 %) from P and pre-run levels. Inflammatory markers were 47 % lower in TC compared to P over time (p = 0.053) coupled with a significant difference between groups (p = 0.017). Soreness perception between the groups was different over time in the medial quadriceps (p = 0.035) with 34 % lower pre-run soreness in TC compared to P. Over the 48-h recovery period, P changes in medial quadriceps soreness from pre-run measures were smaller compared to TC. CONCLUSION: Results revealed that short-term supplementation of Montmorency powdered tart cherries surrounding an endurance challenge attenuated markers of muscle catabolism, reduced immune and inflammatory stress, better maintained redox balance, and increased performance in aerobically trained individuals.


Subject(s)
Physical Endurance , Prunus avium , Adolescent , Adult , Antioxidants/analysis , Biomarkers/blood , Dietary Supplements , Double-Blind Method , Female , Humans , Immunity , Inflammation , Male , Muscle, Skeletal/metabolism , Myalgia , Oxidation-Reduction , Phytotherapy , Placebos , Prunus avium/chemistry , Quadriceps Muscle , Running , Young Adult
14.
J Int Soc Sports Nutr ; 13: 12, 2016.
Article in English | MEDLINE | ID: mdl-27034623

ABSTRACT

BACKGROUND: Creatine monohydrate (CrM) and nitrate are popular supplements for improving exercise performance; yet have not been investigated in combination. We performed two studies to determine the safety and exercise performance-characteristics of creatine nitrate (CrN) supplementation. METHODS: Study 1 participants (N = 13) ingested 1.5 g CrN (CrN-Low), 3 g CrN (CrN-High), 5 g CrM or a placebo in a randomized, crossover study (7d washout) to determine supplement safety (hepatorenal and muscle enzymes, heart rate, blood pressure and side effects) measured at time-0 (unsupplemented), 30-min, and then hourly for 5-h post-ingestion. Study 2 participants (N = 48) received the same CrN treatments vs. 3 g CrM in a randomized, double-blind, 28d trial inclusive of a 7-d interim testing period and loading sequence (4 servings/d). Day-7 and d-28 measured Tendo™ bench press performance, Wingate testing and a 6x6-s bicycle ergometer sprint. Data were analyzed using a GLM and results are reported as mean ± SD or mean change ± 95 % CI. RESULTS: In both studies we observed several significant, yet stochastic changes in blood markers that were not indicative of potential harm or consistent for any treatment group. Equally, all treatment groups reported a similar number of minimal side effects. In Study 2, there was a significant increase in plasma nitrates for both CrN groups by d-7, subsequently abating by d-28. Muscle creatine increased significantly by d-7 in the CrM and CrN-High groups, but then decreased by d-28 for CrN-High. By d-28, there were significant increases in bench press lifting volume (kg) for all groups (PLA, 126.6, 95 % CI 26.3, 226.8; CrM, 194.1, 95 % CI 89.0, 299.2; CrN-Low, 118.3, 95 % CI 26.1, 210.5; CrN-High, 267.2, 95 % CI 175.0, 359.4, kg). Only the CrN-High group was significantly greater than PLA (p < 0.05). Similar findings were observed for bench press peak power (PLA, 59.0, 95 % CI 4.5, 113.4; CrM, 68.6, 95 % CI 11.4, 125.8; CrN-Low, 40.9, 95 % CI -9.2, 91.0; CrN-High, 60.9, 95 % CI 10.8, 111.1, W) and average power. CONCLUSIONS: Creatine nitrate delivered at 3 g was well-tolerated, demonstrated similar performance benefits to 3 g CrM, in addition, within the confines of this study, there were no safety concerns.


Subject(s)
Anaerobic Threshold/drug effects , Dietary Supplements , Muscle Strength/drug effects , Nitrates/administration & dosage , Physical Endurance/drug effects , Physical Fitness/physiology , Weight Lifting/physiology , Adult , Anaerobic Threshold/physiology , Athletic Performance , Blood Pressure/drug effects , Creatine , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Heart Rate/drug effects , Humans , Male , Muscle Strength/physiology , Muscle, Skeletal/drug effects
15.
Psychol Res ; 80(4): 518-31, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26115758

ABSTRACT

The present study examined the efficacy of a short bout of moderately intensive exercise to protect knowledge of a newly acquired motor sequence. Previous work revealed that sleep-dependent offline gains in motor sequence performance are reduced by practicing an alternative motor sequence in close temporal proximity to the original practice with the target motor sequence. In the present work, a brief bout of exercise was inserted at two different temporal locations between practice of a to-be-learned motor sequence and the interfering practice that occurred 2 h later. At issue was whether exposure to exercise could reduce the impact of practice with the interfering task which was expected to be manifest as reemergence of offline gain observed in the case in which the learner is not exposed to the interfering practice. Acute exercise did influence the interfering quality of practice with an alternative motor sequence resulting in the return of broad offline gain. However, this benefit was immediate, emerging on the initial test trial, only when exercise was experienced some time after the original period of motor sequence practice and just prior to practice with the interfering motor sequence. Thus, while exercise can contribute to post-practice consolidation, there appears to be a fragile interplay between spontaneous memory consolidation occurring after task practice and the consolidation processes induced via exercise.


Subject(s)
Exercise/physiology , Learning/physiology , Motor Skills/physiology , Practice, Psychological , Humans , Sleep
16.
J Int Soc Sports Nutr ; 12: 41, 2015.
Article in English | MEDLINE | ID: mdl-26578852

ABSTRACT

BACKGROUND: The purpose of this study was to examine whether short-term ingestion of a powdered tart cherry supplement prior to and following intense resistance-exercise attenuates muscle soreness and recovery strength loss, while reducing markers of muscle damage, inflammation, and oxidative stress. METHODS: Twenty-three healthy, resistance-trained men (20.9 ± 2.6 yr, 14.2 ± 5.4% body fat, 63.9 ± 8.6 kg FFM) were matched based on relative maximal back squat strength, age, body weight, and fat free mass. Subjects were randomly assigned to ingest, in a double blind manner, capsules containing a placebo (P, n = 12) or powdered tart cherries [CherryPURE(®)] (TC, n = 11). Participants supplemented one time daily (480 mg/d) for 10-d including day of exercise up to 48-h post-exercise. Subjects performed ten sets of ten repetitions at 70% of a 1-RM back squat exercise. Fasting blood samples, isokinetic MVCs, and quadriceps muscle soreness ratings were taken pre-lift, 60-min, 24-h, and 48-h post-lift and analyzed by MANOVA with repeated measures. RESULTS: Muscle soreness perception in the vastus medialis (») (p = 0.10) and the vastus lateralis (») (p = 0.024) was lower in TC over time compared to P. Compared to pre-lift, TC vastus medialis (») soreness was significantly attenuated up to 48-h post-lift with vastus lateralis (») soreness significantly lower at 24-h post-lift compared to P. TC changes in serum creatinine (p = 0.03, delta p = 0.024) and total protein (p = 0.018, delta p = 0.006) were lower over time and smaller from pre-lift levels over time compared to P Significant TC group reductions from pre-lift levels were found for AST and creatinine 48-h post-lift, bilirubin and ALT 60-min and 48-h post-lift. No significant supplementation effects were observed for serum inflammatory or anti-inflammatory markers. None of the free radical production, lipid peroxidation, or antioxidant capacity markers (NT, TBARS, TAS, SOD) demonstrated significant changes with supplementation. Changes in TC whole blood lymphocyte counts (p = 0.013) from pre-lift were greater compared to P, but TC lymphocyte counts returned to pre-lift values quicker than P. CONCLUSION: Short-term supplementation of Montmorency powdered tart cherries surrounding a single bout of resistance exercise, appears to be an effective dietary supplement to attenuate muscle soreness, strength decrement during recovery, and markers of muscle catabolism in resistance trained individuals.


Subject(s)
Antioxidants/administration & dosage , Dietary Supplements , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Oxidative Stress/drug effects , Prunus avium , Resistance Training , Adult , Double-Blind Method , Humans , Inflammation/prevention & control , Male , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Myalgia/prevention & control , Sports Nutritional Physiological Phenomena , Thigh , Treatment Outcome
18.
Am J Physiol Endocrinol Metab ; 308(3): E192-200, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25425002

ABSTRACT

Aquatic treadmill (ATM) running may simultaneously promote aerobic fitness and enhance muscle growth when combined with resistance training (RT) compared with land-treadmill (LTM) running. Therefore, we examined acute and chronic physiological responses to RT, concurrent RT-LTM, and concurrent RT-ATM. Forty-seven untrained volunteers (men: n = 23, 37 ± 11 yr, 29.6 ± 4.6 kg/m(2); women: n = 24, 38 ± 12 yr, 27.53 ± 6.4 kg/m(2)) from the general population were tested for V̇o2max, body composition, and strength before and after training. All groups performed 12 wk of RT (2 wk, 3 × 8-12 sets at 60 to approximately 80% 1-repetition maximum). The RT-LTM and RT-ATM groups also performed 12 wk of LTM or ATM training (2 wk immediately post-RT and 1 wk in isolation, 60-85% V̇o2max, 250-500 kcal/session). Additionally, 25 subjects volunteered for muscle biopsy prior to and 24 h post-acute exercise before and after training. Stable isotope labeling (70% (2)H2O, 3 ml/kg) was utilized to quantify 24 h post-exercise myofibrillar fractional synthesis rates (myoFSR). Mixed-model ANOVA revealed that RT-ATM but not RT-LTM training produced greater chronic increases in lean mass than RT alone (P < 0.05). RT-LTM training was found to elicit the greatest decreases in percent body fat (-2.79%, P < 0.05). In the untrained state, acute RT-ATM exercise elicited higher 24-h myoFSRs compared with RT (+5.68%/day, P < 0.01) and RT-LTM (+4.08%/day, P < 0.05). Concurrent RT-ATM exercise and training elicit greater skeletal muscle anabolism than RT alone or RT-LTM.


Subject(s)
Exercise/physiology , Muscle, Skeletal/metabolism , Resistance Training , Running/physiology , Adult , Body Composition/physiology , Deuterium Exchange Measurement , Exercise Test , Female , Humans , Lung Volume Measurements , Male , Middle Aged , Resistance Training/methods , Time Factors , Water
19.
J Int Soc Sports Nutr ; 11(1): 55, 2014.
Article in English | MEDLINE | ID: mdl-25505854

ABSTRACT

BACKGROUND: The purpose of this study was to examine the short-term and chronic effects of ß-ALA supplementation with and without creatine monohydrate on body composition, aerobic and anaerobic exercise performance, and muscle carnosine and creatine levels in college-aged recreationally active females. METHODS: Thirty-two females were randomized in a double-blind, placebo-controlled manner into one of four supplementation groups: ß-ALA only (BA, n = 8), creatine only (CRE, n = 8), ß-ALA and creatine combined (BAC, n = 9) and placebo (PLA, n = 7). Participants supplemented for four weeks included a loading phase for the creatine for week 1 of 0.3 g/kg of body weight and a maintenance phase for weeks 2-4 of 0.1 g/kg of body weight, with or without a continuous dose of ß-ALA of 0.1 g/kg of body weight with doses rounded to the nearest 800 mg capsule providing an average of 6.1 ± 0.7 g/day of ß-ALA. Participants reported for testing at baseline, day 7 and day 28. Testing sessions consisted of obtaining a resting muscle biopsy of the vastus lateralis, body composition measurements, performing a graded exercise test on the cycle ergometer for VO2peak with lactate threshold determination, and multiple Wingate anaerobic capacity tests. RESULTS: Although mean changes were consistent with prior studies and large effect sizes were noted, no significant differences were observed among groups in changes in muscle carnosine levels (BA 35.3 ± 45; BAC 42.5 ± 99; CRE 0.72 ± 27; PLA 13.9 ± 44%, p = 0.59). Similarly, although changes in muscle phosphagen levels after one week of supplementation were consistent with prior reports and large effect sizes were seen, no statistically significant effects were observed among groups in changes in muscle phosphagen levels and the impact of CRE supplementation appeared to diminish during the maintenance phase. Additionally, significant time × group × Wingate interactions were observed among groups for repeated sprint peak power normalized to bodyweight (p = 0.02) and rate of fatigue (p = 0.04). CONCLUSIONS: Results of the present study did not reveal any consistent additive benefits of BA and CRE supplementation in recreationally active women.

20.
J Int Soc Sports Nutr ; 11(1): 6, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24568653

ABSTRACT

BACKGROUND: Extracts of Russian Tarragon (RT) have been reported to produce anti-hyperglycemic effects and influence plasma creatine (Cr) levels while supplementing with creatine monohydrate (CrM). The purpose of this preliminary study was to determine if short-term, low-dose aqueous RT extract ingestion prior to CrM supplementation influences whole body Cr retention, muscle Cr or measures of anaerobic sprint performance. METHODS: In a double-blind, randomized, and crossover manner; 10 recreationally trained males (20 ± 2 yrs; 179 ± 9 cm; 91.3 ± 34 kg) ingested 500 mg of aqueous RT extract (Finzelberg, Andernach, Germany) or 500 mg placebo 30-minutes prior to ingesting 5 g of CrM (Creapure®, AlzChem AG, Germany) twice per day for 5-days then repeated after a 6-week wash-out period. Urine was collected at baseline and during each of the 5-days of supplementation to determine urine Cr content. Whole body Cr retention was estimated from urine samples. Muscle biopsies were obtained for determination of muscle free Cr content. Participants also performed two 30-second Wingate anaerobic capacity tests prior to and following supplementation for determination of peak power (PP), mean power (MP), and total work (TW). Data were analysed by repeated measures MANOVA. RESULTS: Whole body daily Cr retention increased in both groups following supplementation (0.0 ± 0.0; 8.2 ± 1.4, 6.5 ± 2.4, 5.6 ± 3.2, 6.1 ± 2.6, 4.8 ± 3.2 g · d-1; p = 0.001) with no differences observed between groups (p = 0.59). After 3 and 5-days of supplementation, respectively, both supplementation protocols demonstrated a significant increase in muscle free Cr content from baseline (4.8 ± 16.7, 15.5 ± 23.6 mmol · kg-1 DW, p = 0.01) with no significant differences observed between groups (p = 0.34). Absolute change in MP (9 ± 57, 35 ± 57 W; p = 0.031), percent change in MP (2.5 ± 10.5, 6.7 ± 10.4%; p = 0.026), absolute change in TW (275 ± 1,700, 1,031 ± 1,721 J; p = 0.032), and percent change in TW (2.5 ± 10.5, 6.6 ± 10.4%; p = 0.027) increased over time in both groups with no differences observed between groups. CONCLUSIONS: Short-term CrM supplementation (10 g · d-1 for 5-days) significantly increased whole body Cr retention and muscle free Cr content. However, ingesting 500 mg of RT 30-min prior to CrM supplementation did not affect whole body Cr retention, muscle free Cr content, or anaerobic sprint capacity in comparison to ingesting CrM with a placebo.

SELECTION OF CITATIONS
SEARCH DETAIL
...