Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
J Anat ; 244(5): 739-748, 2024 May.
Article in English | MEDLINE | ID: mdl-38303104

ABSTRACT

The study was conducted to quantify laryngeal cartilage matrix composition and to investigate its relationship with cartilage shape in a mouse model. A sample of 30 mice (CD-1 mouse, Mus musculus) from five age groups (postnatal Days 2, 21, 90, 365, and 720) were used. Three-dimensional mouse laryngeal thyroid cartilage reconstructions were generated from contrast-enhanced micro-computed tomography (CT) image stacks. Cartilage matrix composition was estimated as Hounsfield units (HU). HU were determined by overlaying 3D reconstructions as masks on micro-CT image stacks and then measuring the attenuation. Cartilage shape was quantified with landmarks placed on the surface of the thyroid cartilage. Shape differences between the five age groups were analyzed using geometric morphometrics and multiparametric analysis of landmarks. The relationship between HU and shape was investigated with correlational analyses. Among five age groups, HU became higher in older animals. The shape of the thyroid cartilage changes with age throughout the entire life of a mouse. The changes in shape were not synchronized with changes in cartilage matrix composition. The thyroid cartilage of young and old M. musculus larynx showed a homogenous mineralization pattern. High-resolution contrast-enhanced micro-CT imaging makes the mouse larynx accessible for analysis of genetic and environmental factors affecting shape and matrix composition.


Subject(s)
Cartilage , Thyroid Cartilage , Animals , Mice , Thyroid Cartilage/diagnostic imaging , X-Ray Microtomography , Disease Models, Animal
2.
J Exp Biol ; 227(5)2024 03 01.
Article in English | MEDLINE | ID: mdl-38269528

ABSTRACT

Characterizing mechanisms of vocal production provides important insight into the ecology of acoustic divergence. In this study, we characterized production mechanisms of two types of vocalizations emitted by western harvest mice (Reithrodontomys megalotis), a species uniquely positioned to inform trait evolution because it is a sister taxon to peromyscines (Peromyscus and Onychomys spp.), which use vocal fold vibrations to produce long-distance calls, but more ecologically and acoustically similar to baiomyines (Baiomys and Scotinomys spp.), which employ a whistle mechanism. We found that long-distance calls (∼10 kHz) were produced by airflow-induced vocal fold vibrations, whereas high-frequency quavers used in close-distance social interactions (∼80 kHz) were generated by a whistle mechanism. Both production mechanisms were facilitated by a characteristic laryngeal morphology. Our findings indicate that the use of vocal fold vibrations for long-distance communication is widespread in reithrodontomyines (Onychomys, Peromyscus, Reithrodontomys spp.) despite overlap in frequency content that characterizes baiomyine whistled vocalizations. The results illustrate how different production mechanisms shape acoustic variation in rodents and contribute to ecologically relevant communication distances.


Subject(s)
Larynx , Peromyscus , Animals , Sigmodontinae , Acoustics , Ecology
3.
PLoS One ; 18(8): e0286582, 2023.
Article in English | MEDLINE | ID: mdl-37590183

ABSTRACT

The Panamanian golden frog (Atelopus zeteki) is a critically endangered species and currently is believed to survive and reproduce only in human care. Panamanian golden frog males are considerably vocal which may be an important component in their successful reproduction, though little is currently known about their calls. To better understand the behavior and vocal patterns of this species and to improve breeding efforts in the assurance colony, we employed individual sound recording of male advertisement calls and acoustic monitoring of a breeding colony to investigate variation in the vocal behavior of Panamanian golden frogs. The goal was to capture variability within and among frogs as well as patterns of periodicity over time. First, the advertisement calls from individual male Panamanian golden frogs were recorded, and acoustic parameters were analyzed for individual differences. Results suggest that male advertisement calls demonstrate individual- and population specificity. Second, data collected through a year-long acoustic monitoring of the breeding colony were investigated for circadian and circannual periodicity. Male vocal activity revealed a circadian periodicity entrained by the daily light schedule. Seasonal periodicity was also found with highest vocal activities between December and March. The finding of a seasonal periodicity is worth noting given that the population had been bred for 20 years under constant environmental conditions. Finally, results suggest that vocal activity was responsive to daily animal care activity. Vocal activity decreased substantially when personnel entered the room and engaged in animal husbandry activities. The findings illustrate the usefulness of acoustic monitoring to provide insight into animal behavior in a zoo setting in a key breeding colony of endangered animals, and calling pattern observations may be utilized to modify husbandry practices to improve Panamanian golden frog breeding success and general care.


Subject(s)
Anura , Bufonidae , Animals , Humans , Male , Seasons , Acoustics , Activities of Daily Living
4.
Sci Rep ; 13(1): 7673, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169811

ABSTRACT

Laryngeal morphotypes have been hypothesized related to both phonation and to laryngeal pathologies. Morphotypes have not been validated or demonstrated quantitatively and sources of shape and size variation are incompletely understood but are critical for the explanation of behavioral changes (e.g., changes of physical properties of a voice) and for therapeutic approaches to the larynx. This is the first study to take this crucial step and results are likely to have implications for surgeons and speech language pathologists. A stratified human sample was interrogated for phenotypic variation of the vocal organ. First, computed tomography image stacks were used to generate three-dimensional reconstructions of the thyroid cartilage. Then cartilage shapes were quantified using multivariate statistical analysis of high dimensional shape data from margins and surfaces of the thyroid cartilage. The effects of sex, age, body mass index (BMI) and body height on size and shape differences were analyzed. We found that sex, age, BMI and the age-sex interaction showed significant effects on the mixed sex sample. Among males, only age showed a strong effect. The thyroid cartilage increased in overall size, and the angulation between left and right lamina decreased in older males. Age, BMI and the age-height interaction were statistically significant factors within females. The angulation between left and right lamina increased in older females and was smaller in females with greater BMI. A cluster analysis confirmed the strong age effect on larynx shape in males and a complex interaction between the age, BMI and height variables in the female sample. The investigation demonstrated that age and BMI, two risk factors in a range of clinical conditions, are associated with shape and size variation of the human larynx. The effects influence shape differently in female and male larynges. The male-female shape dichotomy is partly size-dependent but predominantly size-independent.


Subject(s)
Plastic Surgery Procedures , Voice , Humans , Male , Female , Aged , Thyroid Cartilage/diagnostic imaging , Phonation , Body Mass Index
5.
Proc Biol Sci ; 289(1982): 20220792, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100028

ABSTRACT

Many birds emit tonal song syllables even though the sound sources generate sound with rich upper harmonic energy content. This tonality is thought to arise in part from dynamically adjusted filtering of harmonic content. Here, we compare tonality of song syllables between vocal learners and non-learners to assess whether this characteristic is linked to the increased neural substrate that evolved with vocal learning. We hypothesize that vocal learning ability is correlated with enhanced ability for generating tonal sounds, because vocal production learners might also have an enhanced ability to articulate their vocal tracts and sound source for producing tonality. To test this hypothesis, we compared vocal learners and non-learners from two groups (186 passerines and 42 hummingbirds) by assessing tonality of song syllables. The data suggest that vocal learners in both clades have evolved to sing songs with higher tonality than the related, non-vocal learning clades, which is consistent with stronger roles for broadband dynamic filtering and adjustments to the sound source. In addition, oscine songs display higher tonality than those of hummingbirds. A complex interplay of vocal tract biomechanics, anatomical differences of the sound source as well as increased motor control through vocal learning facilitates generation of broad tonality.


Subject(s)
Songbirds , Vocalization, Animal , Animals , Learning , Sound
6.
J Exp Biol ; 225(9)2022 05 01.
Article in English | MEDLINE | ID: mdl-35413125

ABSTRACT

Rodent diversification is associated with a large diversity of species-specific social vocalizations generated by two distinct laryngeal sound production mechanisms: whistling and airflow-induced vocal fold vibration. Understanding the relative importance of each modality to context-dependent acoustic interactions requires comparative analyses among closely related species. In this study, we used light gas experiments, acoustic analyses and laryngeal morphometrics to identify the distribution of the two mechanisms among six species of deer mice (Peromyscus spp.). We found that high frequency vocalizations (simple and complex sweeps) produced in close-distance contexts were generated by a whistle mechanism. In contrast, lower frequency sustained vocalizations (SVs) used in longer distance communication were produced by airflow-induced vocal fold vibrations. Pup isolation calls, which resemble adult SVs, were also produced by airflow-induced vocal fold vibrations. Nonlinear phenomena (NLP) were common in adult SVs and pup isolation calls, suggesting irregular vocal fold vibration characteristics. Both vocal production mechanisms were facilitated by a characteristic laryngeal morphology, including a two-layered vocal fold lamina propria, small vocal membrane-like extensions on the free edge of the vocal fold, and a singular ventral laryngeal air pocket known as the ventral pouch. The size and composition of vocal folds (rather than total laryngeal size) appears to contribute to species-specific acoustic properties. Our findings suggest that dual modes of sound production are more widespread among rodents than previously appreciated. Additionally, the common occurrence of NLP highlights the nonlinearity of the vocal apparatus, whereby small changes in anatomy or physiology trigger large changes in behavior. Finally, consistency in mechanisms of sound production used by neonates and adults underscores the importance of considering vocal ontogeny in the diversification of species-specific acoustic signals.


Subject(s)
Larynx , Peromyscus , Animals , Larynx/physiology , Rodentia , Sound , Vibration , Vocal Cords/anatomy & histology , Vocalization, Animal/physiology
7.
Hear Res ; 404: 108210, 2021 05.
Article in English | MEDLINE | ID: mdl-33713993

ABSTRACT

Age-related and noise-induced hearing loss disorders are among the most common pathologies affecting Americans across their lifespans. Loss of auditory feedback due to hearing disorders is correlated with changes in voice and speech-motor control in humans. Although rodents are increasingly used to model human age- and noise-induced hearing loss, few studies have assessed vocal changes after acoustic trauma. Northern grasshopper mice (Onychomys leucogaster) represent a candidate model because their hearing sensitivity is matched to the frequencies of long-distance vocalizations that are produced using vocal fold vibrations similar to human speech. In this study, we quantified changes in auditory brainstem responses (ABRs) and vocalizations related to aging and noise-induced acoustic trauma. Mice showed a progressive decrease in hearing sensitivity across 4-32 kHz, with males losing hearing more rapidly than females. In addition, noise-exposed mice had a 61.55 dB SPL decrease in ABR sensitivity following a noise exposure, with some individuals exhibiting a 21.25 dB recovery 300-330 days after noise exposure. We also found that older grasshopper mice produced calls with lower fundamental frequency. Sex differences were measured in duration of calls with females producing longer calls with age. Our findings indicate that grasshopper mice experience age- and noise- induced hearing loss and concomitant changes in vocal output, making them a promising model for hearing and communication disorders.


Subject(s)
Hearing Loss, Noise-Induced , Acoustic Stimulation , Animals , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem , Female , Hearing Loss, Noise-Induced/etiology , Male , Mice , Noise/adverse effects
8.
J Speech Lang Hear Res ; 63(8): 2680-2694, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32762490

ABSTRACT

Purpose The larynx plays a role in swallowing, respiration, and voice production. All three functions change during ontogeny. We investigated ontogenetic shape changes using a mouse model to inform our understanding of how laryngeal form and function are integrated. We understand the characterization of developmental changes to larynx anatomy as a critical step toward using rodent models to study human vocal communication disorders. Method Contrast-enhanced micro-computed tomography image stacks were used to generate three-dimensional reconstructions of the CD-1 mouse (Mus musculus) laryngeal cartilaginous framework. Then, we quantified size and shape in four age groups: pups, weanlings, young, and old adults using a combination of landmark and linear morphometrics. We analyzed postnatal patterns of growth and shape in the laryngeal skeleton, as well as morphological integration among four laryngeal cartilages using geometric morphometric methods. Acoustic analysis of vocal patterns was employed to investigate morphological and functional integration. Results Four cartilages scaled with negative allometry on body mass. Additionally, thyroid, arytenoid, and epiglottic cartilages, but not the cricoid cartilage, showed shape change associated with developmental age. A test for modularity between the four cartilages suggests greater independence of thyroid cartilage shape, hinting at the importance of embryological origin during postnatal development. Finally, mean fundamental frequency, but not fundamental frequency range, varied predictably with size. Conclusion In a mouse model, the four main laryngeal cartilages do not develop uniformly throughout the first 12 months of life. High-dimensional shape analysis effectively quantified variation in shape across development and in relation to size, as well as clarifying patterns of covariation in shape among cartilages and possibly the ventral pouch. Supplemental Material https://doi.org/10.23641/asha.12735917.


Subject(s)
Laryngeal Diseases , Larynx , Animals , Disease Models, Animal , Epiglottis , Larynx/diagnostic imaging , X-Ray Microtomography
9.
J Exp Biol ; 223(Pt 12)2020 06 26.
Article in English | MEDLINE | ID: mdl-32457066

ABSTRACT

Elaborate animal communication displays are often accompanied by morphological and physiological innovations. In rodents, acoustic signals used in reproductive contexts are produced by two distinct mechanisms, but the underlying anatomy that facilitates such divergence is poorly understood. 'Audible' vocalizations with spectral properties between 500 Hz and 16 kHz are thought to be produced by flow-induced vocal fold vibrations, whereas 'ultrasonic' vocalizations with fundamental frequencies above 19 kHz are produced by an aerodynamic whistle mechanism. Baiomyine mice (genus Baiomys and Scotinomys) produce complex frequency-modulated songs that span these traditional distinctions and represent important models to understand the evolution of signal elaboration. We combined acoustic analyses of spontaneously vocalizing northern pygmy mice (Baiomystaylori) in air and light gas atmosphere with morphometric analyses of their vocal apparatus to infer the mechanism of vocal production. Increased fundamental frequencies in heliox indicated that pygmy mouse songs are produced by an aerodynamic whistle mechanism supported by the presence of a ventral pouch and alar cartilage. Comparative analyses of the larynx and ventral pouch size among four additional ultrasonic whistle-producing rodents indicated that the unusually low 'ultrasonic' frequencies (relative to body size) of pygmy mice songs are associated with an enlarged ventral pouch. Additionally, mice produced shorter syllables while maintaining intersyllable interval duration, thereby increasing syllable repetition rates. We conclude that while laryngeal anatomy sets the foundation for vocal frequency range, variation and adjustment of central vocal motor control programs fine tunes spectral and temporal characters to promote acoustic diversity within and between species.


Subject(s)
Rodentia , Vocalization, Animal , Acoustics , Animals , Helium , Mice , Oxygen
10.
Sci Rep ; 10(1): 2007, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029812

ABSTRACT

How sound is generated in the hummingbird syrinx is largely unknown despite their complex vocal behavior. To fill this gap, syrinx anatomy of four North American hummingbird species were investigated by histological dissection and contrast-enhanced microCT imaging, as well as measurement of vocalizations in a heliox atmosphere. The placement of the hummingbird syrinx is uniquely located in the neck rather than inside the thorax as in other birds, while the internal structure is bipartite with songbird-like anatomical features, including multiple pairs of intrinsic muscles, a robust tympanum and several accessory cartilages. Lateral labia and medial tympaniform membranes consist of an extracellular matrix containing hyaluronic acid, collagen fibers, but few elastic fibers. Their upper vocal tract, including the trachea, is shorter than predicted for their body size. There are between-species differences in syrinx measurements, despite similar overall morphology. In heliox, fundamental frequency is unchanged while upper-harmonic spectral content decrease in amplitude, indicating that syringeal sounds are produced by airflow-induced labia and membrane vibration. Our findings predict that hummingbirds have fine control of labia and membrane position in the syrinx; adaptations that set them apart from closely related swifts, yet shows convergence in their vocal organs with those of oscines.


Subject(s)
Biological Evolution , Songbirds/physiology , Trachea/anatomy & histology , Vocalization, Animal/physiology , Animals , Elastic Tissue/anatomy & histology , Elastic Tissue/diagnostic imaging , Elastic Tissue/physiology , Female , Male , Muscles/anatomy & histology , Muscles/diagnostic imaging , Muscles/physiology , Songbirds/anatomy & histology , Trachea/diagnostic imaging , Trachea/physiology , X-Ray Microtomography
11.
J Neurophysiol ; 123(3): 966-979, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31967929

ABSTRACT

Deep breaths are one of three breathing patterns in rodents characterized by an increased tidal volume. While humans incorporate deep breaths into vocal behavior, it was unknown whether nonhuman mammals use deep breaths for vocal production. We have utilized subglottal pressure recordings in awake, spontaneously behaving male Sprague-Dawley rats in five contexts: sleep, rest, noxious stimulation, exposure to a female in estrus, and exposure to an unknown male. Deep breaths were produced at rates ranging between 17.5 and 90.3 deep breaths per hour. While overall breathing and vocal rates were higher in social and noxious contexts, the rate of deep breaths was only increased during the male's interaction with a female. Results also inform our understanding of vocal-respiratory integration in rats. The rate of deep breaths that were associated with a vocalization during the exhalation phase increased with vocal activity. The proportion of deep breaths that were associated with a vocalization (on average 22%) was similar to the proportion of sniffing or eupnea breaths that contain a vocalization. Therefore, vocal motor patterns appear to be entrained to the prevailing breathing rhythm, i.e., vocalization uses the available breathing pattern rather than recruiting a specific breathing pattern. Furthermore, the pattern of a deep breath was different when it was associated with a vocalization, suggesting that motor planning occurs. Finally, deep breaths are a source for acoustic variation; for example, call duration and fundamental frequency modulation were both larger in 22-kHz calls produced following a deep inhalation.NEW & NOTEWORTHY The emission of a long, deep, audible breath can express various emotions. The investigation of deep breaths, also known as sighing, in a nonhuman mammal demonstrated the occasional use of deep breaths for vocal production. Similar to the human equivalent, acoustic features of a deep breath vocalization are characteristic.


Subject(s)
Respiration , Sexual Behavior, Animal/physiology , Social Behavior , Vocalization, Animal/physiology , Animals , Male , Rats , Rats, Sprague-Dawley
12.
PLoS Biol ; 17(2): e2006507, 2019 02.
Article in English | MEDLINE | ID: mdl-30730882

ABSTRACT

The unique avian vocal organ, the syrinx, is located at the caudal end of the trachea. Although a larynx is also present at the opposite end, birds phonate only with the syrinx. Why only birds evolved a novel sound source at this location remains unknown, and hypotheses about its origin are largely untested. Here, we test the hypothesis that the syrinx constitutes a biomechanical advantage for sound production over the larynx with combined theoretical and experimental approaches. We investigated whether the position of a sound source within the respiratory tract affects acoustic features of the vocal output, including fundamental frequency and efficiency of conversion from aerodynamic energy to sound. Theoretical data and measurements in three bird species suggest that sound frequency is influenced by the interaction between sound source and vocal tract. A physical model and a computational simulation also indicate that a sound source in a syringeal position produces sound with greater efficiency. Interestingly, the interactions between sound source and vocal tract differed between species, suggesting that the syringeal sound source is optimized for its position in the respiratory tract. These results provide compelling evidence that strong selective pressures for high vocal efficiency may have been a major driving force in the evolution of the syrinx. The longer trachea of birds compared to other tetrapods made them likely predisposed for the evolution of a syrinx. A long vocal tract downstream from the sound source improves efficiency by facilitating the tuning between fundamental frequency and the first vocal tract resonance.


Subject(s)
Acoustics , Animal Structures/physiology , Biological Evolution , Models, Biological , Animals , Birds/anatomy & histology , Computer Simulation , Larynx/physiology , Mammals/anatomy & histology , Sound , Trachea/physiology , Vocalization, Animal
13.
J Speech Lang Hear Res ; 61(12): 2884-2894, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30515514

ABSTRACT

Purpose: The purposes of this study are to introduce the concept of vocal priorities based on acoustic correlates, to develop an instrument to determine these vocal priorities, and to analyze the pattern of vocal priorities in patients with voice disorders. Method: Questions probing the importance of 5 vocal attributes (vocal clarity, loudness, mean speaking pitch, pitch range, vocal endurance) were generated from consensus conference involving speech-language pathologists, laryngologists, and voice scientists, as well as patient feedback. The responses to the preliminary items from 213 subjects were subjected to exploratory factor analysis, which confirmed 4 of the predefined domains. The final instrument consisted of a 16-item Vocal Priority Questionnaire probing the relative importance of clarity, loudness, mean speaking pitch, and pitch range. Results: The Vocal Priority Questionnaire had high reliability (Cronbach's α = .824) and good construct validity. A majority of the cohort (61%) ranked vocal clarity as their highest vocal priority, and 20%, 12%, and 7% ranked loudness, mean speaking pitch, and pitch range, respectively, as their highest priority. The frequencies of the highest ranked priorities did not differ by voice diagnosis or by sex. Considerable individual variation in vocal priorities existed within these large trends. Conclusions: A patient's vocal priorities can be identified and taken into consideration in planning behavioral or surgical intervention for a voice disorder. Inclusion of vocal priorities in treatment planning empowers the patient in shared decision making, helps the clinician tailor treatment, and may also improve therapy compliance.


Subject(s)
Precision Medicine/standards , Speech Production Measurement/standards , Speech Therapy/methods , Voice Disorders/diagnosis , Adult , Aged , Factor Analysis, Statistical , Female , Humans , Loudness Perception , Male , Middle Aged , Precision Medicine/methods , Precision Medicine/psychology , Reproducibility of Results , Speech Acoustics , Speech Production Measurement/methods , Speech Production Measurement/psychology , Surveys and Questionnaires , Voice Disorders/psychology , Voice Quality
14.
Front Behav Neurosci ; 12: 250, 2018.
Article in English | MEDLINE | ID: mdl-30420800

ABSTRACT

Infant vocalizations are one of the most fundamental and innate forms of behavior throughout avian and mammalian orders. They have a critical role in motivating parental care and contribute significantly to fitness and reproductive success. Dysregulation of these vocalizations has been reported to predict risk of central nervous system pathologies such as hypoxia, meningitis, or autism spectrum disorder. Here, we have used the expanded BXD family of mice, and a diallel cross between DBA/2J and C57BL/6J parental strains, to begin the process of genetically dissecting the numerous facets of infant vocalizations. We calculate heritability, estimate the role of parent-of-origin effects, and identify novel quantitative trait loci (QTLs) that control ultrasonic vocalizations (USVs) on postnatal days 7, 8, and 9; a stage that closely matches human infants at birth. Heritability estimates for the number and frequency of calls are low, suggesting that these traits are under high selective pressure. In contrast, duration and amplitude of calls have higher heritabilities, indicating lower selection, or their importance for kin recognition. We find suggestive evidence that amplitude of infant calls is dependent on the maternal genotype, independent of shared genetic variants. Finally, we identify two loci on Chrs 2 and 14 influencing call frequency, and a third locus on Chr 8 influencing the amplitude of vocalizations. All three loci contain strong candidate genes that merit further analysis. Understanding the genetic control of infant vocalizations is not just important for understanding the evolution of parent-offspring interactions, but also in understanding the earliest innate behaviors, the development of parent-offspring relations, and the early identification of behavioral abnormalities.

15.
Proc Natl Acad Sci U S A ; 115(41): 10209-10217, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30249637

ABSTRACT

In its most basic conception, a novelty is simply something new. However, when many previously proposed evolutionary novelties have been illuminated by genetic, developmental, and fossil data, they have refined and narrowed our concept of biological "newness." For example, they show that these novelties can occur at one or multiple levels of biological organization. Here, we review the identity of structures in the avian vocal organ, the syrinx, and bring together developmental data on airway patterning, structural data from across tetrapods, and mathematical modeling to assess what is novel. In contrast with laryngeal cartilages that support vocal folds in other vertebrates, we find no evidence that individual cartilage rings anchoring vocal folds in the syrinx have homology with any specific elements in outgroups. Further, unlike all other vertebrate vocal organs, the syrinx is not derived from a known valve precursor, and its origin involves a transition from an evolutionary "spandrel" in the respiratory tract, the site where the trachea meets the bronchi, to a target for novel selective regimes. We find that the syrinx falls into an unusual category of novel structures: those having significant functional overlap with the structures they replace. The syrinx, along with other evolutionary novelties in sensory and signaling modalities, may more commonly involve structural changes that contribute to or modify an existing function rather than those that enable new functions.


Subject(s)
Biological Evolution , Birds/anatomy & histology , Birds/physiology , Trachea/anatomy & histology , Animals , Fossils , Larynx/anatomy & histology , Larynx/physiology , Phylogeny , Respiratory System/anatomy & histology , Trachea/physiology , Vocal Cords , Vocalization, Animal
16.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28724740

ABSTRACT

Functional changes in vocal organ morphology and motor control facilitate the evolution of acoustic signal diversity. Although many rodents produce vocalizations in a variety of social contexts, few studies have explored the underlying production mechanisms. Here, we describe mechanisms of audible and ultrasonic vocalizations (USVs) produced by grasshopper mice (genus Onychomys). Grasshopper mice are predatory rodents of the desert that produce both loud, long-distance advertisement calls and USVs in close-distance mating contexts. Using live-animal recording in normal air and heliox, laryngeal and vocal tract morphological investigations, and biomechanical modelling, we found that grasshopper mice employ two distinct vocal production mechanisms. In heliox, changes in higher-harmonic amplitudes of long-distance calls indicate an airflow-induced tissue vibration mechanism, whereas changes in fundamental frequency of USVs support a whistle mechanism. Vocal membranes and a thin lamina propria aid in the production of long-distance calls by increasing glottal efficiency and permitting high frequencies, respectively. In addition, tuning of fundamental frequency to the second resonance of a bell-shaped vocal tract increases call amplitude. Our findings indicate that grasshopper mice can dynamically adjust motor control to suit the social context and have novel morphological adaptations that facilitate long-distance communication.


Subject(s)
Arvicolinae/physiology , Social Behavior , Vocalization, Animal , Acoustics , Animals , Helium , Larynx/anatomy & histology , Oxygen , Vocal Cords/anatomy & histology
17.
J Exp Biol ; 220(Pt 5): 814-821, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28250176

ABSTRACT

Traditionally, the ultrasonic vocal repertoire of rats is differentiated into 22 kHz and 50 kHz calls, two categories that contain multiple different call types. Although both categories have different functions, they are sometimes produced in the same behavioral context. Here, we investigated the peripheral mechanisms that generate sequences of calls from both categories. Male rats, either sexually experienced or naïve, were exposed to an estrous female. The majority of sexually naïve male rats produced 22 kHz and 50 kHz calls on their first encounter with a female. We recorded subglottal pressure and electromyographic activity of laryngeal muscles and found that male rats sometimes concatenate long 22 kHz calls and 50 kHz trill calls into an utterance produced during a single breath. The qualitatively different laryngeal motor patterns for both call types were produced serially during the same breathing cycle. The finding demonstrates flexibility in the laryngeal-respiratory coordination during ultrasonic vocal production, which has not been previously documented physiologically in non-human mammals. Since only naïve males produced the 22 kHz-trills, it is possible that the production is experience dependent.


Subject(s)
Rats/physiology , Sexual Behavior, Animal , Ultrasonic Waves , Vocalization, Animal , Acoustic Stimulation , Animals , Female , Larynx/physiology , Male , Respiration , Sound Spectrography
18.
R Soc Open Sci ; 4(11): 170976, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29291091

ABSTRACT

Some rodents produce ultrasonic vocalizations (USVs) for social communication using an aerodynamic whistle, a unique vocal production mechanism not found in other animals. The functional anatomy and evolution of this sound production mechanism remains unclear. Using laryngeal airway reconstruction, we identified anatomical specializations critical for USV production. A robust laryngeal cartilaginous framework supports a narrow supraglottal airway. An intralaryngeal airsac-like cavity termed the ventral pouch was present in three muroid rodents (suborder Myomorpha), but was absent in a heteromyid rodent (suborder Castorimorpha) that produces a limited vocal repertoire and no documented USVs. Small lesions to the ventral pouch in laboratory rats caused dramatic changes in USV production, supporting the hypothesis that an interaction between a glottal exit jet and the alar edge generates ultrasonic signals in rodents. The resulting undulating airflow around the alar edge interacts with the resonance of the ventral pouch, which may function as a Helmholtz resonator. The proposed edge-tone mechanism requires control of intrinsic laryngeal muscles and sets the foundation for acoustic variation and diversification among rodents. Our work highlights the importance of anatomical innovations in the evolution of animal sound production mechanisms.

19.
Nature ; 538(7626): 502-505, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27732575

ABSTRACT

From complex songs to simple honks, birds produce sounds using a unique vocal organ called the syrinx. Located close to the heart at the tracheobronchial junction, vocal folds or membranes attached to modified mineralized rings vibrate to produce sound. Syringeal components were not thought to commonly enter the fossil record, and the few reported fossilized parts of the syrinx are geologically young (from the Pleistocene and Holocene (approximately 2.5 million years ago to the present)). The only known older syrinx is an Eocene specimen that was not described or illustrated. Data on the relationship between soft tissue structures and syringeal three-dimensional geometry are also exceptionally limited. Here we describe the first remains, to our knowledge, of a fossil syrinx from the Mesozoic Era, which are preserved in three dimensions in a specimen from the Late Cretaceous (approximately 66 to 69 million years ago) of Antarctica. With both cranial and postcranial remains, the new Vegavis iaai specimen is the most complete to be recovered from a part of the radiation of living birds (Aves). Enhanced-contrast X-ray computed tomography (CT) of syrinx structure in twelve extant non-passerine birds, as well as CT imaging of the Vegavis and Eocene syrinxes, informs both the reconstruction of ancestral states in birds and properties of the vocal organ in the extinct species. Fused rings in Vegavis form a well-mineralized pessulus, a derived neognath bird feature, proposed to anchor enlarged vocal folds or labia. Left-right bronchial asymmetry, as seen in Vegavis, is only known in extant birds with two sets of vocal fold sound sources. The new data show the fossilization potential of the avian vocal organ and beg the question why these remains have not been found in other dinosaurs. The lack of other Mesozoic tracheobronchial remains, and the poorly mineralized condition in archosaurian taxa without a syrinx, may indicate that a complex syrinx was a late arising feature in the evolution of birds, well after the origin of flight and respiratory innovations.


Subject(s)
Animal Structures/anatomy & histology , Birds/anatomy & histology , Fossils , Vocalization, Animal , Animals , Antarctic Regions , Biological Evolution , Dinosaurs , Extinction, Biological , Skull/anatomy & histology
20.
Evolution ; 70(8): 1734-46, 2016 08.
Article in English | MEDLINE | ID: mdl-27345722

ABSTRACT

Most birds vocalize with an open beak, but vocalization with a closed beak into an inflating cavity occurs in territorial or courtship displays in disparate species throughout birds. Closed-mouth vocalizations generate resonance conditions that favor low-frequency sounds. By contrast, open-mouth vocalizations cover a wider frequency range. Here we describe closed-mouth vocalizations of birds from functional and morphological perspectives and assess the distribution of closed-mouth vocalizations in birds and related outgroups. Ancestral-state optimizations of body size and vocal behavior indicate that closed-mouth vocalizations are unlikely to be ancestral in birds and have evolved independently at least 16 times within Aves, predominantly in large-bodied lineages. Closed-mouth vocalizations are rare in the small-bodied passerines. In light of these results and body size trends in nonavian dinosaurs, we suggest that the capacity for closed-mouth vocalization was present in at least some extinct nonavian dinosaurs. As in birds, this behavior may have been limited to sexually selected vocal displays, and hence would have co-occurred with open-mouthed vocalizations.


Subject(s)
Biological Evolution , Birds/physiology , Vocalization, Animal , Acoustics , Animals , Male , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...